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About This Manual

Dear Colleague:

My intention is that this be a very down-to-earth, practical guide to help
you when you use Chapter Zero in the classroom. Chapter Zero is written in
such a way that its ultimate worth as a learning tool depends a great deal on
the way that students interact with it, with each other, and with you. The
dynamics of each individual course strongly influences how successful the text
will be. Therefore, I write this guide almost entirely from the point of view of
a teacher who has used Chapter Zero in a class and only occasionally from the
point of view of the author.

I have used the first edition of Chapter Zero in my own classes for a number
of years. I also received detailed feedback from reviewers that had used the
first edition in their classes. With this information in hand, I have made a
number of (what I think are) improvements in the second edition. I hope that
these changes will make things run more smoothly for instructors—including
me—that use the book.

The Instructor’s Resource Guide is divided into two major parts. In the first
part, I will speak in detail about the way that I organize and run the class when
I use Chapter Zero. I will also discuss specific difficulties that I have encountered
and suggest strategies for heading them off or dealing with them if they arise.
(There are a few additions from the first edition of the IRM, but it is largely
the same as the corresponding section in the first edition.)

The discussion in the first part will concentrate on the particular model
that I have used for running the class: a seminar-like model in which there
is virtually no lecturing. Class time is spent in discussion, small group work,
and with students presenting their proofs and solutions to one another. The
instructor acts primarily as a moderator. It makes sense to think of this as the
“native” model for using the book; Chapter Zero was written precisely for use
in this way. However, it is not at all difficult to see ways of including more
lecturing, and you may choose to do so. Even if you do things in a way very
different from mine, some of my comments may be useful to you; so I urge you
at least to skim the first part.

In the second part, I will go through the book chapter by chapter and make
specific comments. I will do as many of the following as seem useful:

• Tell you what I do when I cover the chapter.

• Point out specific places where my students have encountered difficulties
(and ways that I have found of helping them through).

• Talk about overall strategies I have used to make the chapter go more
smoothly.
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• Make suggestions for class discussion.

At the end of the second part, I include a section elaborating on the de-
pendency chart that appears in the front matter to Chapter Zero, as well as a
list of the errors that I have found in the book. As I become aware of other
errors, I will update this section in the web-version of the IRM. Known errors
will be corrected for the second and subsequent printings. If you find any errors,
I would consider it a great kindness were you to let me know about them.

Please understand that what you find herein are thoughts based on my own
experiences teaching out of Chapter Zero. I am continually learning new things
as I teach, and therefore I have no pretensions that what I write is the definitive
or final word. I hope that many of my comments will be useful to you. There
is no doubt that some of them will not be. If, in using the book, you encounter
difficulties that I do not address in this guide, I hope that you will feel free
to contact me. I will try to help if I can. Better yet, if you find additional
strategies that work in your classes or for your students, I would be grateful if
you would let me know of them. That way I can use them myself and pass them
on to other colleagues who are using the book.

Respectfully,

Carol S. Schumacher

vi



Part I

A Course that uses Chapter Zero
This chapter describes how I have used Chapter Zero in a sophomore-level course
at Kenyon College. I include fairly detailed descriptions of the day-to-day rou-
tine of the class, various problems and pitfalls I have encountered, and my gen-
eral strategies for dealing with them. The course is typically taken by students
who have had three semesters of calculus (though no knowledge of calculus is
assumed by the text), and is a prerequisite for our upper-level courses in ab-
stract algebra, real analysis, etc. Each year a number of our best prepared and
most mathematically inclined first-year students take the course. They tend to
do very well, often outperforming the sophomores. Recently, almost half of the
students have been first-year students. For the purposes of this discussion, I
will call the course “Foundations.”
Remark: The Note to the Student found in the front matter of Chapter Zero
contains essential information about the way that students are meant to use the
text and about the meanings of various labels that are used through out the
book. It is a “must read” for teachers as well as students who use the book.
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Philosophy

Goals

At root, my goal in Foundations is quite simple. Students who complete the
course should be well-prepared to succeed in more advanced studies of abstract
mathematics. This means that they must have acquired certain skills:

• They should know how to make sense of an abstract definition by analyzing
it carefully and constructing examples.

• They should also know how to make sense of a mathematical statement,
and be able to bring to bear a variety of strategies for constructing its
proof.

• They must be able to recognize a rigorous proof when they read one.
Conversely, they need to be able to pick out the weak spot(s) in a less
rigorous argument—their own or someone else’s.

• They ought to be able to fill in details in a sketchy proof.

• Once they have devised a proof, they must be able to write it down in a
clear, concise manner using correct English and mathematical grammar.

• Students have to be able to present and defend a proof to a group of their
peers—oral communication is as important as written communication.

Moreover, I hope that they will think of these as central tools in the mathe-
matical enterprise. (In reality, of course, these are very sophisticated skills, so
students who finish Foundations are only beginning to fully acquire these skills;
the Foundations course is a first step, but a very important one.)

However, students need more than an array of desirable skills. They also
need some core knowledge to work from. Thus, one of my aims in the Foun-
dations course is for my students to acquire a thorough-going mastery of some
fundamental topics. The topics in Chapter Zero underlie and permeate virtually
all branches of mathematics, and students will see them over and over again in
their further studies.
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Learning a Language

I often think of Foundations as a language course. Learning mathematical
language goes beyond just learning jargon (though there is plenty of vocabu-
lary to acquire). Mathematical language is far more precise than ordinary ways
of speaking and writing, and using language so precisely does not come natu-
rally to most people. Yet learning this language (and learning how to use it
to accomplish a given task) is an essential step on the road to mathematical
maturity.

Speaking a new language differs greatly from reading it, writing it or listening
to someone else speak it. Getting students to talk seriously about mathematics
is therefore an essential part of Foundations. I conduct the course seminar-style.
I give very few (if any) lectures, acting primarily as a moderator. The students
do most of the talking, presenting proofs and exercises to one another or working
in small groups. As I say in the preface to Chapter Zero, “the most important
lines of communication are between students.” In general, I find that the less I
talk in a class, the more the students get out of it.

Student Autonomy

One of my principal ambitions as a teacher is to finally make my students
independent of me. Nothing else that I teach them will be half so valuable or
powerful as the ability to reach conclusions by reasoning logically from first prin-
ciples and being able to justify those conclusions in clear, persuasive language
(either oral or written).

Furthermore, I want my students to experience the unmistakable feeling that
comes when one really understands something thoroughly.1 Much “classroom
knowledge” is fairly superficial, and students often find it hard to judge their own
level of understanding. For many students, the only way they know whether
they are “getting it” comes from the grade they make on an exam. I hope
that my own students, by passing beyond superficial acquaintance with some
mathematical ideas, will become less reliant on such externals. When they
can distinguish between really knowing something and merely knowing about
something, they will be on their way to becoming independent learners.

There are also some basic skills that set students free to learn on their own.
I believe they must be able to read and understand books that contain new
knowledge. They must be able to handle problems that aren’t “pre-digested”
by learning to ask their own questions and having some tools with which to find

1Every year I have Foundations students come to tell me that for the first time they have
“really nailed” a proof. They have no doubts that it is right and are ecstatic! They are
experiencing the feeling for the first time. It is clear that they will never forget it.
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answers to those questions. They must be able to distinguish the essential from
the trivial.2

So what are the means by which students gain this sort of autonomy? I find
that students become more autonomous when they are given real opportunities
to do things on their own. I wrote Chapter Zero with precisely this in mind.
Both as an author and as a teacher, I do my best to help students find their own
answers rather than answering their questions for them. However, no matter
how hard I try to make this happen, it will not happen unless I allow the
Foundations class move at the students’ pace, instead of my own. This demands
that I do two related things that I find difficult. First, I have to fight my
tendency to become impatient; and second, I have to learn when to keep my
counsel and let the students do the talking. It is easy to become impatient, since
in a couple of lectures I could “cover” material that can occupy my students
for four or five class meetings. Letting students work through things on their
own always takes longer, but they come away being able to devise their own
arguments and with a better grasp of the ideas. That, after all, is the whole
point!

It is also easy to talk too much during class. I think Foundations students
need to learn to talk to each other more than they talk to me. When conversing
with me, students inevitably look to me for answers. In a conversation with
their peers, students know they have to find their own answers. Fostering this
sort of conversation also requires patience on my part. Frequently my students
will wrestle with an issue that I could rapidly clarify with a few words or a well-
chosen example. However, the most valuable class meetings are usually those
in which I manage to rein in my impulse to jump to their rescue. The students
begin to talk to each other as they try to resolve the issue. Sometimes they
succeed and sometimes they do not, but they learn much from each other and
from their own struggles to state their points of view convincingly. If in the end
they reach a deadlock, or if something more needs to be said, then I can still
add my own remarks to the discussion.

I grant my Foundations students as much autonomy as I think they can
handle. This does not mean that I let them take charge of the class. It means
that what happens in the class happens because they make it happen.

2Naturally, this is not the work of any single course. It is a process. However, I try to
make Foundations the first serious step in this direction.
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Class Mechanics

Class Organization

Since Foundations is an unusual kind of class, I think it is worthwhile to tell
you in some detail how it is organized—what I do and exactly what I expect
from my students (both in and out of class).

Student Responsibilities

Because of my goal of student autonomy, much of the responsibility for
moving the class along rests with the students.

Preparing for Class Since I seldom lecture, it is the students’ regular respon-
sibility to read the textbook carefully. I expect them to work out all of
the examples and exercises as they read through the section.3 These are
a big part of coming to understand the reading.

I assign explicit problems and theorems for the students to work on out-
side of class. Though I know that not all students will “get” all of these,
I expect that each student will regularly be proving theorems and will
have worked on every assigned problem enough to understand its state-
ment, to have in mind the relevant definitions, and to comprehend the
mathematical issues at hand.

Class routine We go over exercises and examples during class discussions,
as needed. In the process, we can conveniently discuss and clarify new
definitions. Though I may have a specific goal in mind, I try to moderate
rather than lead the discussion. The direction that the class discussion
takes chiefly depends on the students. During class discussions, I call on
students by name to give their results for exercises and examples.

Students are responsible for presenting problems and theorems at the
board. This is usually done by volunteers, who receive credit for their
presentations.

During a presentation, the rest of the class is not off the hook just because
another student volunteered! Those who are sitting down are responsible
for contributing questions and comments that help clarify what is being
presented at the board. I try to make it clear that questions and comments

3These are never assigned explicitly. Exercises and examples are understood to be part of
everyone’s assignment, unless otherwise noted.
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need not only come from students who don’t understand the problem. Part
of the purpose of class participation, I tell them, is to help the person
who is presenting work explain things as clearly as possible. Another
student who has done the problem and understands it well can often make
suggestions that help clarify the wording or the structure of a presentation.
When students are not asking questions that I think they ought to be
asking, I frequently call on students that are sitting down and ask them
the questions pointed questions about the presentation.

Written Work I give regular written assignments, though they are not as
frequent as they would be in a lecture course. (Since students are regularly
participating in the Foundations class, I get regular feedback about their
work and progress.) Written assignments come in two major varieties:

• Theorems or problems that I want to make sure every student in the
class works through. This may be because an important mathemati-
cal idea is involved, or because the solution requires a particular proof
technique that I want to be sure every student is mastering. Some-
times I assign a problem or theorm just because it is obvious no one
in the class has worked on it. For instance, I always give an assign-
ment on mathematical induction in which the students must apply
it in more than one context. I permit students to work cooperatively
on these problems. (See “Cooperative Learning” below.)

• Take-home exams in which students must work individually and
prove theorems that they have not seen before. For these, the stu-
dents are allowed to talk to me, but not to anyone else. They are
allowed to use the text and any notes that they have taken for the
class. They are not allowed to consult outside sources.

Naturally, I require that written work be carefully prepared and turned in
on time.

Class Presentations

Though the atmosphere in the Foundations class is informal and friendly, what
we do in the class is serious business. In particular, the presentations made by
students are taken very seriously since they spearhead the work of the class.

Here are some of the things my students need to know about making a
presentation at the board:

• In order to make the presentation go smoothly, the presenter needs to
have written out the proof in detail and gone over the major ideas and
transitions, so that he or she can make clear the path of the proof to
others.
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• The purpose of class presentation is not to prove to the instructor that
the presenter has done the problem. It is to make the ideas of the proof
clear to the other students.

• Presenters are to write in complete sentences, using proper English and
mathematical grammar.

• Presenters should explain their reasoning as they go along, not simply
write everything down and then turn to explain.

• Fellow students are allowed to ask questions at any point and it is the
responsibility of the person making the presentation to answer those ques-
tions to the best of his or her ability.

• Since the presentation is directed at the students, the presenter should
frequently make eye-contact with the students in order to address ques-
tions when they arise and also be able to see how well the other students
are following the presentation.

I grade the students at the board both on the content of their proof and
on the quality of the presentation. I grade the quality more harshly as the
semester wears on, since I expect the students’ presentation skills to develop
with practice.
Remark: Any time a problem lends itself to being discussed orally, I try to deal
with it in this way. I have two reasons for this. First of all, oral discussion usually
takes less time than class presentation. I always work to gain time wherever I
can without rushing the subtler ideas. The second and more important factor I
learned the hard way. If I have students present problems in which the reasoning
is simple enough to convey without writing anything down, students get lazy
about writing in complete sentences and giving a careful presentation. (It is hard
to fault students here, since belaboring the obvious does seem an unnecessary
waste of time.) I tried the tactic of letting my students be a bit more informal
in such presentations, but found in the end that this sloppiness spilled over into
trickier problems, where it was not acceptable. Now I think carefully through
the exercises, examples, and problems, dividing them in my mind into oral
problems and written problems. Things go more smoothly when I do this.

Cooperative Learning

I encourage my students to work together outside of class. The kind of material
that they encounter lends itself very well to give and take, and students benefit
from being able to bounce ideas off of each other. I think that most students
who thrive in the course are part of a small group of 3-4 students who work
together regularly outside of class. As an added benefit, I think that students
who work in a small group typically enjoy the class more. The intense working
sessions cement friendships that go beyond the work in Foundations.

7



Students are not, of course, allowed to work together on exams. They are
also not permitted to write up written assignments together. In the handout
that I prepare for the first day of class, I say explicitly that “all written work
must finally be [the student’s] own expression.” This prevents a weaker student
from relying too much on a friend who is a stronger student. Students know that
after talking things out with their friends they will have to write solutions up on
their own; therefore, they must thoroughly understand them. (Some students
ignore this instruction at first, but if I see papers that look too similar, I remind
them of it. This usually solves the problem.)

My Role

I hesitate—even more than usual—as I write this section. I find it hard to
describe precisely what I do, for I spend much of my time responding to the
changing situation in the class. I am often guided by instinct. This is probably
true of anyone who teaches a class in which the students move things along.

On the other hand, it is certainly possible to make some general remarks
about what my role in the Foundations class. I must make the obvious kinds of
decisions:

• What topics should I cover?

• What specific problems and theorems shall I assign?

• Which problems (word used broadly!) should be covered orally, which
should be presented at the board, which should be part of a written as-
signment?

• How many tests will there be and when should they be given?

I have to do other mundane things such as working out the problems that I
assign to my students so that I am aware of possible snags, and so that I have
appropriate hints in mind for students that might have trouble.

It is harder to describe what I might call my “shepherding” responsibilities.
In order to keep the class running smoothly, I have to play an active role in the
pacing of the class. Sometimes it is important to let things move fairly slowly
to give the students a chance to assimilate some subtle ideas. At other times, I
have to prod my students a little bit to get them through more straightforward
ideas in a timely manner. It is not possible to describe this ebb and flow exactly.
Different classes may respond differently. Keeping close tabs on the reactions of
my students helps me to know how to proceed.

Though I place a great deal of stock in having my students arrive at their own
answers to the mathematical questions raised in the course, it is unproductive to
let them wrestle forever with any one difficult issue. I have to pay close attention
to the students so that I know when they can overcome an obstacle on their own
and when an additional hint might be necessary. (Of course, how readily I give
a hint will also depend on the specific topic at hand—some things are worth
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more wrestling than others! There are topics that can be left “hanging” for
further student thought while the class moves ahead, whereas other obstacles
must be surmounted before any further progress can be made.)

Some Foundations students start the course more able to handle abstraction
and rigor than others. Some students adapt very rapidly to the rigorous thinking
and precise use of language involved in proving theorems. Others have a great
deal of trouble. All students have the opportunity for growth. As much as I
can, I tailor Foundations so that individual students can proceed along a path
which will ultimately lead them toward mathematical independence. Naturally,
students with different levels of aptitude and preparation require very different
sorts of stimulation and help from me. As a result, I spend a great deal of time
during the semester working individually with students in my office. This can be
quite time-consuming but is very rewarding, and it helps me to give individual
students exactly the hints or help that they require to proceed on their own.

Two Typical Class Meetings

It is a dreary Wednesday afternoon in the last week of February. This is
more than one-third of the way through our semester, so the Foundations class
is well underway. The students by now understand what is expected of them
and things are running smoothly. The quality of the class presentations has
been steadily improving. We have been working our way through the section on
orderings (4.2) for the last couple of class meetings, but we have yet to tackle
the least upper bound.

I never begin a discussion by stating a definition. The students in the class
are supposed to have read the definition already and worked through the asso-
ciated exercises and examples. Nevertheless, I like to initiate a discussion that
will naturally lead to a review of the definition.

I decide to begin by going over student answers to Exercise 4.2.21. This
exercise asks the students to interpret the definitions for upper bound, least
upper bound, and so on in terms of the ordered set they understand best: (R ,≤).
The discussion of this problem takes a few minutes, because in the course of the
discussion I ask slight variations of the questions that are written and manage
to bring up most of the issues associated with the relevant definitions.

At this point, I set students to work on problems 9, 10 and 11 at the end of
the chapter. (Pages 98 and 99.) They work in small groups of two or three. I
circulate around and discuss their progress with them. In these problems the
students are asked to explore the notions of upper bound, least upper bound,
greatest element, lower bound, greatest lower bound, and least element in less
familiar contexts. They are especially chosen to tease out subleties that the
students might miss in the more familiar setting of the real numbers. I give
the students about 20 minutes. Some students will have completed most of the
problems in this time. Others will still be struggling with the first or second.
Nevertheless, I stop the work and move to the next idea.
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I take my seat and ask for a volunteer to prove Theorem 4.2.22, which
establishes the uniqueness of least upper bounds. An average student volunteers
to present his proof. His presentation is good, but his proof is problematic.4 He
proceeds by contradiction: Suppose there are two distinct least upper bounds a
and b. Then either a > b or a < b. In the first case, a cannot be the least upper
bound, and in the second case b cannot be the least upper bound. So there can
only be one least upper bound.

The other students spot one of the flaws at once. Since we only assume
that we have a partial ordering, we do not immediately know that a and b are
comparable. Once this is agreed upon, I ask the question, “Is this proof valid
in a totally ordered set?” Most of the students agree that it is.

I take the opportunity to remind them of the standard technique of ap-
proaching uniqueness proofs, first outlined in Chapter 2: assume there are two
and show they are equal. The volunteer tried a different tack: assume there
are two that are different and derive a contradiction. This would be correct
logically, but the standard approach is most often easier and more direct. As
usual when a student presents an erroneous proof, the problem is now “his.” He
will have an opportunity to present a revised proof at our next class meeting on
Friday.

I finish the class by telling the students to finish their work on Problems
9, 10, and 11, if they have not already done so. They need not turn in their
solutions, but I suggest that a good understanding of these problems will serve
them well on the upcoming midterm. I will be glad to discuss any difficulties
with these problems during my office hours.5 I also take the opportunity to
talk about the meaning of the word “lemma” and tell the class that they should
work on proofs for Lemma 4.2.25 and Theorem 4.2.26—these will be presented
during the next class period.

Friday’s class . . .

The first part of the class is taken up by a new attempt to present the proof
of Theorem 4.2.22. This time the student gives a proof, which after some minor
suggestions from classmates is pronounced correct.

When that is concluded, we briefly discuss the least upper bound property
and its importance (especially) in the real number system. We also go over
the significance of problem 11(c) (p.99). Then I ask for a volunteer to present
Lemma 4.2.25. One of the best students in the class agrees to present the lemma
and does a very good job. Another good student suggests that a sentence should
be added in order to justify a particular claim, and this is done. I can see
that, despite the silence, other students in the class are reeling from just trying
to understand what is going on, so I let everyone ponder the proof for three

4Actually, I have never actually seen this particular mistake, but it is a good illustration
of what happens when an erroneous proof is presented—which is something that can occur in
a “typical” class!

5Students who are having trouble with these problems are having trouble with the defini-
tions and need to come talk to me!
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minutes, on the clock. Everyone claims to be satisfied; my guess is that most of
them are, but I can see that a few of the weaker students are “hiding.” I may
find an excuse later to talk to them about how things are going. Perhaps I can
get them to come in for individual help.

We move ahead, I ask for a volunteer to present Theorem 4.2.26, but I don’t
really expect one. To my surprise, a student raises her hand. (The same student
that made the suggestion for adding a sentence to the proof of the lemma.) I am
surprised, but delighted, because I have never before had a student volunteer
to present the proof of this theorem. I have always ended up assigning it to the
class as a written assignment.6 The presenter does a splendid job. I guess I will
have to think of another major written assignment for this class.

There are about fifteen minutes left in our class period. This is just about
the right amount of time to go over the basic notions of ”pairwise disjoint” and
“partition,” as a prelude to our study of equivalence relations. I give a little
preliminary introduction. Then I lead the students through the definition of
pairwise disjoint; we construct several examples as a group. I get the students
discussing the notion of “mutually exclusive and exhaustive categories.” As we
discuss the idea, we gradually zero in on the definition of partition that is given
on page 79. We finish the class by working through Exercise 4.3.5 which asks
the students to construct various specific examples of partitions. I end the class
by telling the students to carefully read through this information to set it in
their minds and then to work through the ideas discussed on pages 80 and 81.
We will discuss these ideas and present the proof of Theorem 4.3.8 on Monday.

Testing and Grades

This semester I am teaching Foundations; I have divided up the grade as
follows:

Class Work 45 %
In-class Midterm 5 %
2 Take-home Midterms 15 % each
Take-home Final Exam 15 %
In-class Final 5 %
Total 100 %

6This really happened in my class last week. In the first edition of Chapter Zero, I did
not state Lemma 4.2.25 separately. I gave a hint that pointed toward it, but the hint seemed
to confuse students more than to help them. When I was working on the second edition, I
decided that the explicit statement of a lemma would help. The two students who volunteered
were among the best students in the class, and my guess is that the weaker students will still
struggle with this proof. Nevertheless, the lemma seems to have helped make the problem
more tractable for at least some students.
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I have tried other, more complex schemes, including giving a portion of the
grade for writing style—the criteria applied being correct use of language, and
clear and concise expression. (The grade was given based on the progress made
by the student over the course of the semester.) I also have given frequent
pop quizzes whose major aim was to make sure the students could give basic
definitions and examples. Such quizzes simply monitered whether everyone in
the class was doing the reading. So my grading system changes somewhat
from semester to semester. However, I have come to prefer a fairly uncluttered
grading scheme such as the one given above.

A large portion (45%) of the grade is given for the work that students do
day to day. ”Class Work” includes written assignments, class participation, and
in-class presentations. All students are expected to participate regularly in class
discussion and to put in their fair share of time at the board. Since students
cannot participate if they are not present, class attendance is mandatory. I
don’t make the “teeth” on this policy explicit, but missing classes without good
reason is understood to count against the student‘s participation grade at the
end of the semester.

As you see, I give two exams during the semester. Each of these exams has
both an in-class and a take-home portion. The in-class portion is worth much
less than the take-home portion.

I do not ask the students to prove theorems on the in-class exam. Instead, the
in-class portion is meant to be a straightforward, objective test that measures
how well students have the “facts” at their fingertips. I always ask the students
to give several definitions. The rest of the test consists of true/false or short
answer questions. These often (but not always) require a short justification.
Among the short answer questions I usually include some that ask the students
to give examples of objects we have studied. If the students have kept up with
the readings and discussions, putting the ideas together in their minds, they
should be able to do very well on this portion of the exam.

The take-home portion of the exam consists entirely of proofs that the stu-
dents haven’t seen before—usually 6-8 problems, several of which have multiple
parts. I try to include a wide range of difficulty in these proofs. I give a couple
of easy and short arguments that just test the students’ ability to “follow their
noses” through the logic from the definitions to the desired conclusion. Each
exam also has a more difficult proof that requires a real idea or a deeper un-
derstanding of ideas covered in the text (or both). Certainly such a proof will
have several steps so that the students will have to sustain a chain of reasoning
in order to achieve their goal. Most of the problems lie somewhere in between.
Sometimes I think up problems and sometimes I steal them from books. In
addition, I have some general sorts of things that I like to include on exams.

• Many times I give harder problems by breaking them up into multiple
parts that help the students find their way through the ideas and also give
them a good chance for partial credit. This makes such problems more
tractable and puts them in the middle level of difficulty.

• I almost always have a problem in which students are asked to decide
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whether a certain mathematical statement is true and to justify their
conclusion by giving a proof or a counterexample.

• Very often I introduce a new idea by giving the students a definition and
leading them through some simple propositions.

Time frame: Students frequently must balance the competing demands made
by their various classes. I therefore used to give my students a week to work
on their take-home exam, thinking that it would not be so hard for them to
find a couple of days within that period to dedicate to the work. However, I
discovered that some students were spending most of the week working on it,
while others (who were unlucky enough to have other papers due or other tests
to study for) could only use a day or two of the time. I tried making it just a
two-day turnover, but then some unlucky students got to spend very little time
on it. It never seemed to work out fairly. I have at last arrived at a compromise
scheme. I seal each test in a manila envelope with places marked “time opened”
and “time sealed” on the outside. Each student can then pick any 48 hour time
period during a specific one-week span to work on the exam. The students are
on their honor to work only for the 48 hours.7

7I suppose there are students who abuse this privilege, but I already place so much trust
in my students by giving them a take-home, that I reckon that worrying about it is like
“swallowing the camel and straining on the gnat.”

13



Strategies

The First Few Class Periods.

Why I Don’t Lecture

I can think of lots of good reasons to start the Foundations course by lec-
turing.

• It avoids wasting that first day of class, when students have not yet read
anything or done any problems.

• It is a fast way to get through the highlights of the first two chapters. This
way I can make sure the important points are clear without spending too
much time.

• The content in the chapter on Logic is extremely important and if I just
get students to present problems, many of the important ideas may be
overlooked. (This is seldom the case in later chapters.)

• Since it is what they are used to, lecturing makes the students feel more
comfortable in the first few days of classes . The material is very different
from their other math classes, but at least the format is the same.

Well, . . . I used to think that making the students feel comfortable was a good
reason to lecture. I have changed my mind. Students come to my Foundations
class with certain expectations about what sorts of things I will do and how I
will do them. They have equally strong assumptions about what I will expect
from them and what they will need to do to fulfill those expectations. These
are reasonable assumptions based on their experiences in previous math courses,
but they are pretty much all wrong. Foundations is conducted very differently
from any other math course they have ever had. No matter what I do, it is going
to take a while for them to understand what I want from them. I have learned
the hard way that it is very important to burst the bubble of their expectations
right from the start. If I behave “normally” by lecturing in the first few days,
many students will cling to that normality, even when the class routine moves
away from it. The fact that lectures make the students feel comfortable is the
best reason to avoid them in the first days of class.

There are other reasons for not lecturing in the first few class periods.
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• Most students could pick up 75 % of the chapter on Logic by simply
reading carefully, but if I lecture they sit passively taking notes. In fact,
many of the students in Foundations have never actually read a math
textbook, relying instead on class lectures to tell them what they need
to know. The chapter on Logic is a good chapter with which to begin
learning to read mathematics.

• When I have lectured at the outset, it has taken me much longer to get
students seriously working through the material outside of class. When
they finally buckle down to do it, it is on harder material, and this can be
very frustrating for them.

• Many students firmly believe that they understand material better from
lectures than they do from working through it on their own. I firmly
believe the opposite.

It is true that working through material is harder than listening to a lecture
on it. But lectures are polished and smooth. They make everything seem
so straightforward. Students may then feel in control of the material when
they really aren’t. If students do not begin by grappling with the easy
stuff, they may find themselves overmatched later when the material is
harder. A slight vagueness in their understanding of logic and sets can
very rapidly grow into a major problem.

In my view, the negative consequences of lecturing in the first few class
periods far outweigh the advantages. Thus, I steadfastly avoid lecturing for
the first few weeks of classes. An isolated lecture halfway through the semester
seems to be relatively harmless, however, and is sometimes useful as a time-
saver. The students find it a welcome relief but know that it is a temporary
expedient; they have no trouble going back to the usual routine after the lecture
is over.

New Habits, New Routines

The reason that I choose not to lecture is a negative one. That is, I don’t
want the students to think I am going to behave in certain ways, and I don’t
want them to slip into old patterns. However, the old behavior patterns will
creep in anyway if new behavior patterns don’t take their place.

On the very first day of class, I give my students a written sheet outlining
their responsibilities for the course, and I go over it. This helps get the message
across, but it really doesn’t thoroughly sink in. The students do not consciously
think that I am unserious about what I claim to expect; they just don’t have
any idea what I mean. I thus have to show them what I have in mind. Here are
some likely scenarios.

• Suppose that the first time I give the students a reading assignment, they
say “I didn’t understand any of this.” (This is rarely entirely true, but
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learning to read the book does take some practice and persistance.) I
have to resist the temptation to respond by immediately going over the
material. If I do, the students will get the message that if they claim
not to understand, I will simply accept that and lecture.8 What I do
instead is to help them step through the ideas—requiring a lot of input
from them. Basically, I show them some of the tricks I use myself to figure
out something new to me. This has the same effect as lecturing on the
material—we end up going over the major ideas in class—but it helps the
students to see what they need to be doing when they read. It also puts
them on the spot a little, so that they learn that they cannot get out of
reading the material by feigning ignorance.

• I set very high standards for class presentation. At the same time, I realize
that students are not born knowing how to make an oral presentation and
most of them have had little or no practice. Part of the early work of the
class is to talk about what goes into a good presentation.

The first few class presentations are likely to be pretty slipshod affairs.
Students don’t write in complete sentences; they don’t worry about punc-
tuation; they write the entire work on the board with their back to the
class and without saying anything; they ask (me) if there are any ques-
tions as they pick up their book and head back to their seats; and there
are probably other transgressions that I can’t think of right now. It re-
ally doesn’t work to let this pass, hoping that over time the students will
improve. On the contrary, my experience is that, if I don’t say anything,
things just get worse.

As a student writes, I try to make quiet and friendly suggestions—like
“why don’t you explain what you are doing as you go along?” or “you are
saying lots of words that you are not writing on the board. Why don’t
you try writing them down?” Sometimes the student picks up on my
suggestions, but usually she will do what I suggest once or twice and then
stop. After the presentation is complete and the mathematical questions
are answered, I do a pretty thorough job of picking apart the presentation.
I try to be nice. I apologize to the person on the spot, assuring her
that I always have to do this to the first few people who volunteer. I
explain that this is all part of the learning process and making a good
class presentation is not something we are born knowing how to do, but
nevertheless, the process is painful for the students and for me. It is
painful, but essential. It works. Before long the students are giving pretty
darn good class presentations.

• Though I go on a lot about presentations, I emphasize the role of the stu-
dents who are sitting down by leaving comments about the mathematics
almost entirely to them in the first few days. If there is serious disagree-
ment about whether something is right or wrong, I let them toss it back

8At some level, even bright and motivated students will absorb this message.
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and forth for a while. If they don’t resolve the issue, I may give them
a hand, or I may tell them to think about it until the next class period
instead of resolving it for them.

If I can get students seriously working through material on their own outside of
class, giving careful class presentations and participating fully in class discussion
from the outset, they will do well individually and the class is guaranteed to go
smoothly.

Allaying Students’ Fears

My students all know (usually before they sign up for the class) that in
Foundations they will be expected to prove theorems. They often start out the
class intimidated. Many students (even those who eventually come to thrive on
it) are scared to death of the idea of proving theorems on their own. I think that
the main reason for this is that the only theorems students have seen proved in
their previous math courses were major theorems. Arcane language was used
and much machinery was built (seemingly out of thin air) in order to prove the
theorems. I spend a lot of time in the first few weeks just reassuring my students
that I won’t begin by asking them to prove things like the Mean Value Theorem.
I have to convince them that the tasks I am assigning them are doable.

The reassurances I give are various. The idea that we start out with things
that are fairly easy to prove is a standard. There are other things that students
need to be reassured about. For instance, a common student myth is that if
one can get the idea of how a proof should go, then writing it down should be
a triviality. I make it very clear that learning mathematical language is not an
aside, that it is a central theme of the course. I add that using it takes some
getting used to and that we will be concentrating on use of language a lot in
the first few weeks. Mostly this reassures the students because they know that
they are not the only ones having trouble with it, that I recognize that it is
a problem, and that solving it will be a gradual learning process with which I
intend to help them.

Part of the process of allaying students’ fears is to convince them to have a
little patience with the whole process, and to point out when progress has been
made. An example may serve to illustrate. When my students are struggling
with their first element arguments in chapter 2, I tell them that they must wait
and see. “In a few weeks you will encounter a problem and think, ‘Oh, this is
just an element argument!’ ” Several weeks later, when someone is presenting
an element argument and everyone is nodding in agreement, I remind them of
what I had earlier predicted. Many faces brighten, because even those who are
struggling with the more advanced things realize that at least some things are
getting easier. This gives them a feeling of accomplishment and a sense that
their hard work is paying off.

At Kenyon the students who take Foundations are a self-selected group.
They are mostly people who are seriously considering a math major. Most of
them have done pretty well in their previous math courses. Some hit their stride
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in Foundations and breeze through it. They are in their element. But other
students run into roadblocks for the very first time. Even those who have the
ability to surmount the obstacles with some effort can become discouraged. I
find that these discouraged students often respond well if I simply confess that
the course can be hard going, but add that they can meet the challenge if they
work at it.

What About the “Obvious”?

Along the way, I often encounter students that think that everything we are
proving is “obvious” and at root believe that what we are doing is a waste of
time. In response to this, I stipulate that many of the results we are proving
are unsurprising to us. I say that we prove such results for two reasons:

• Since the students are only just learning to prove theorems, I give them
theorems that are fairly easy to prove. Deep results never are. “If you
can’t prove things that are obvious to you, how do you expect to be able
to prove things that are not”?

• I point out that we are building a mathematical framework from which to
work. This we have to do from first principles. “If you are not sure that
your assumptions are strong enough to allow you to prove the ‘obvious,’
how do you know you can trust them when they tell you something that
isn’t”?

The word obvious is a tricky one. Students often use it to describe something
they already “knew” from their previous math classes. Calculus students who
have had calculus in high school often tell me that the product rule is “obvious!”
By “obvious”, I eventually want my students to mean, “It is easy to see how
this follows from previously established facts or assumptions.”

I don’t harp on this, but I manage to work it in repeatedly. I emphasize that
a natural question arises from the statement “That is obvious”: “Why?” I also
try to get them to see that “Because it is” is no answer.

Common Traps and Problems

Over the years, I have come to recognize a number of difficulties that can
arise in Foundations and interfere with the progress of the class. Some are
my problems. Some are problems faced by individual students, while others
affect the class as a whole. If attacked early, many of these can be easily fixed
or averted. Some are less tractable and require constant attention. For all of
them, forewarned is forearmed.
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How Much Do I Tell Them?

I used to be very bad about giving too much away. When a student asked a
question, I was too apt to just come out with the answer. However, one of my
goals is to help my students find the answers on their own. I have worked to
find ways of being helpful without saying too much.

I converse more freely on specifics of the material with single students or
pairs than I do with larger groups. The reason for this is that I can gauge better
exactly where the difficulty lies and just how much I should say. If Carlos is
struggling with a concept, I can help him work out an example. If a Peter and
Susan are stuck on a proof, I try to give them only just enough information to
get them unstuck.

If Monique claims she is stuck, I begin to ask questions. If it seems to me
that she has not really thought long enough to merit a hint, I might say, “I
think you can get this. Work on it some more. Go back to the definitions, think
through the ideas one step at a time. Try to answer this list of questions for
yourself. If you are still stuck in X come back and see me.” (Where X is an
appropriate amount of time.)

How Do We Think About This?

An important aspect of one-on-one interaction with students is that I have
the opportunity to guide the way in which they think through problems. It
used to amaze me how hard it was to get some students (especially early in
the semester) to do something as elementary as to start by going back to the
definitions. I ask Marcus (who claims to be completely stuck on a proof) for
the definition of the main term he is working with, and he can’t give it to me.
If I simply make him go back and read the definition aloud to me and relate it
to the problem at hand, he often figures out what he needs to know right on
the spot. After this has happened a couple of times, Marcus begins to see that
this should be his first step in analyzing a problem.

There are, of course, other simple strategies that we all use to get a handle
on a problem. Lindsay’s difficulty is that she tends to sit deadlocked, staring
at a blank piece of paper, hoping the proof of a theorem will just pop into her
head. Lindsay must learn to ask herself simple questions that will help get her
ideas flowing, but this doesn’t come naturally to her. As I work with Lindsay, I
ask her the sorts of questions that I would ask myself if I were in her situation.
When she can answer these questions, she is well on the way to proving the
theorem. More importantly, she learns something about how to formulate such
questions for herself.
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Definitions: I do not remember ever struggling with this
as a student, but I have come to understand that there
is an often ignored, but fundamental, pedagogical issue
associated with definitions. Mathematicians think of defi-
nitions in very different terms than do most other people.
In other contexts, students have used definitions only to
“get the general idea” behind a notion. One reads a defi-
nition, sees how it is to be used in a sentence, and that is
that. No one in his or her right might would memorize a
dictionary definition word for word! Students have never
had to use definitions in the precise and detailed way that
we do. They basically don’t believe that they have to pay
attention to what they think of as “the minutia.” They
figure that if they can give an example of a partially or-
dered set and an example of a totally ordered set, then
they no longer need to think about the precise wording
of the definition at all. We have to train them to think
of the definitions the way we do. We have to teach them
why it is necessary to pay attention to the precise wording
and how to use mathematical definitions as tools that drive
mathematical argument and discourse.

Too Many Symbols, Not Enough Words

Here is a typical early proof presentation from Patrick, a student in Foundations.

Patrick says: He writes on the board:

We want to show that
A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C). A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C).

Suppose that x is in
A ∪ (B ∩ C). x ∈ A ∪ (B ∩ C).

That means that either x is in A
or x is in B ∩ C. x ∈ A or x ∈ B ∩ C.

If x is in B ∩ C
then x must be in both
B and C. x ∈ B and x ∈ C.

. . . and so on . . .
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Patrick’s proof and the oral part of his presentation are pretty good. But what
he is writing on the board is not by itself sufficient, or even correct. He has left
out the words which convey the logical relations between his formulas.

This habit is quite common among math students, many of whom have un-
fortunately absorbed the idea that only formulas are important in mathematics.
In Foundations (and beyond) it results in three problems. First, if the notes
taken by the other students are as sketchy as what Patrick has written, they
will not be able to make heads or tails of them later, even if they understand
the proof at the time when Patrick explains it. Second, the students are often
one or two lines behind Patrick as he gives his presentation, and won’t catch
the verbal explanations he is giving as he goes along. Third, what is a little
sloppy in a simple proof becomes utterly incomprehensible in a more complex
proof. The connectives and quantifiers are not ornamental: they are exactly
what converts a sequence of mathematical assertions into a proof.

I jump up and down and earnestly wave my arms, and eventually my students
get the idea that words are important, at least to me. In the second phase of this
problem, many students will liberally sprinkle “thus” and “however” throughout
their proofs much as one might sprinkle salt on food to make it tastier. At this
point I have a little talk with them.

I tell them that the English text in a proof should do two jobs. First of all,
it should clearly spell out the logical structure of the argument. That is, the
text is required for correctness. Second, the text is also required for clarity. I
say something like,

Your task as a writer is to give the right cues to your readers, cues
that will make it as easy as possible for them to understand what
you are trying to say. Consider for instance the phrases “therefore”,
“by hypothesis”, and “it follows from what was previously shown”.
Each of these means that what comes next follows logically from pre-
viously assumed or deduced statements. But they indicate different
things to the reader. “Therefore” suggests that what you say next
follows from what you just said. “By hypothesis” means that you
are appealing to an explicitly made assumption. “It follows from
what was previously shown” indicates that the reader will have to
go back some distance in the proof to find the grounds for your next
statement. (To make the reader’s job even easier, you might say “as
I have shown before” and then re-state the previous conclusion that
you are about to use.)9

This all seems to make sense to students, but only after they have made their
own attempts to write and decipher mathematical language. The talk is most
effective if it follows a presentation in which connectives seem to be used only as
“seasoning” and in fact do not convey the correct logical relations. I just have
to look for the right opportunity.

9Students at this stage will typically use some variant of “therefore” in every one of these
instances. Thus my little talk also serves as a suggestion that variety of usage does more than
just keep the reader from getting bored.
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Writing clearly is also the best guide to determine the level of detail appro-
priate to a particular proof. Too much detail can obscure the message almost
as surely as too little detail. This balance is a much trickier thing to gauge and
students develop their instincts for this more slowly. Since students typically
want to write too little, at this stage, I tell them that if they are in doubt they
should err on the side of writing too much.

Winging It

Marsha does reasonably well on her written assignments, but when she presents
her work in class she is often awkward, disorganized, and hard to follow. The
root of her problem is that she thinks that preparing to make an oral presen-
tation is easier than putting together a written assignment. Once she has the
general idea of a proof, she makes a few sketchy notes and figures that she is
ready.

But when she gets to the board, it becomes clear that she is not. Her notation
is often inadequate or confusing. She may hesitate between one step and the
next because she has forgotten (and never wrote down) her justification for the
step. She does not give her fellow students a clear idea of where she is going or
why. Paradoxically, Marsha may be far too reliant on her notes, sketchy as they
are, because she has not reviewed the argument thoroughly enough to recall
its essential structure. She may even discover a mistake in her proof that had
escaped her notice before because she did not bother to write out the details.
If Marsha had just written her proof carefully beforehand and spent some time
thinking about it, most of these problems would not have occurred.

Unfortunately, most of the students in the Foundations class start out with
Marsha’s problem. They believe that an oral presentation is only half the work
of a written assignment, but the reverse is more nearly true. It takes a while
to convince them of this. I try to establish high standards for oral presenta-
tions, and I do this by making pointed suggestions for improvement in specific
instances, particularly in the early part of the course. Students in Foundations
know from the outset that my practice is to grade them on both mathematical
content and quality of presentation.

Putting Off the Inevitable

Jim, one of the weaker students in Foundations, is scared to death. He knows
that eventually he will have to take his turn at the board, but he figures he
isn’t ready yet. So he sits quietly in class and watches his fellow students. To
make matters worse, because Jim is feeling lost he is reluctant to ask questions
or participate in the discussion. He is probably not having a lot of success with
the problems outside of class, either. As his questions go unanswered, things
just get worse.

The problems and theorems in the later part of the course are not as easy
as the ones near the beginning; thus, as Jim procrastinates, the most tractable
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problems pass him by. He feels less and less ready to make his debut at the
board. Later, when it becomes critical to his grade for Jim to start making
presentations, he will be facing harder material with less experience.

If several people in the class share Jim’s problem, by the middle of the term
the class will have split into two groups: one group is actively participating and
learning a great deal, but the other is getting less and less out of the course
with each passing day.

I have found that this sort of thing requires early intervention. From the
very beginning of the course, I call upon individuals to give their solutions to
exercises and examples as part of the class discussion. (Exercises and examples
are supposed to be done by everyone as they read the material, so I do not feel
reluctant to “pick on” individuals by name.) I also try to identify the students
in Jim’s situation within the first two or three weeks of class. Assigning them
specific problems that will get them before the class early can help get them
past the initial barrier. I may also encourage them to speak to me outside of
class. Anything that can “get them going” will make a great deal of difference
to their ability to succeed in the class, but they need continual encouragement
and incentives to keep at it.

Passive Student Syndrome

Alice really liked calculus, and she was pretty good at it. But she doesn’t enjoy
Foundations. She is not “in love” with proofs and theorems and does not really
see the point in them. Consequently, Alice won’t work on any problem that is
not specifically assigned to her and will never volunteer for anything in class. To
be fair, she is fairly diligent about the problems she cannot avoid and does not
skip class meetings. But she seldom participates in class by asking questions or
making comments.

Alice finds the student presentations completely unhelpful. She thinks that
the class time is mostly wasted. She believes that she would learn more in
Foundations if the professor would do a lot more lecturing.

Alice has strong expectations about the way things should be done, and those
expectations are not being met. All of her previous experiences in mathematics
classes have prepared her to function by responding to things that are taught to
her. The professor lectures or the book explains, and then she is ready to apply
her knowledge. She does not at root believe that she can start her work before
she understands the subject, that gaining understanding is in fact part of the
work. She lacks initiative in part because she is waiting for the professor to get
her going.

Basically, Alice doesn’t get it. She does not understand or appreciate the
purpose of the Foundations class. She may secretly believe that the seminar-
style format of the class has been chosen because it is easier for the professor!
As a consequence, Alice does not participate fully in the class and doesn’t get
much out of it.

Changing Alice’s attitudes is a difficult task. The only way I have found to
deal with Alice is to try continually to educate her about the purposes of the
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course and its format. This is basically a selling job. “Alice” (who is a double
major in math and economics) came in to my office last spring and said, “With
all due respect, what is all of this for?” I had the presence of mind to pull
Gerard Debreu’s Theory of Value from my shelf. Debreu won the 1983 Nobel
prize for his investigations of the mathematical foundations of economic theory.
Theory of Value is a great little book that illustrates how abstract applied math
can be. I opened it at random to a page that was brimful of theorems and
proofs about partial orderings, which we had just covered in Foundations. I am
not sure if I sold Alice on the ideas of the course, but it made her a little more
patient.

Who is he talking to, really?

This is not really Bob’s problem, but I notice it while he is presenting a proof
at the board. I notice three things:

1. Bob is making eye contact only with me. In fact, he is clearly talking to
me rather than to his fellow students. He is on the spot, and believes that
his job is to demonstrate to me that he has done this problem correctly.

2. The other students in the class sit and dutifully take notes on Bob’s presen-
tation. As soon as Bob is finished, every head in the room swivels toward
me, and expectant faces wait for me to pass judgment on the work. The
presentation itself was not for them. At best, it has acted as a sort of
“answer key” for a problem that they did not themselves get.

3. Worst of all, in the absence of student response, I find myself reinforcing
their lack of involvement by announcing whether Bob’s proof is correct or
not.

The class has fallen into the worst sort of trap. The pedagogical “engine” that
drives the Foundations course is the interaction among the students. Bob is not
a seasoned lecturer, and if there is no give and take with the other students his
class presentation will not transmit information very effectively.

It is quite easy for this to happen. In fact, it is the natural inclination
of the students (and often mine, as well). In most math classes the primary
interaction is between the teacher and the students through polished lectures
and occasional questions. The seminar-style format all too readily degenerates
into a poor copy of this standard model. I find that I must be on my guard to
prevent this dynamic from becoming established in the first place, because once
it is established it is extremely hard to eradicate.

On the one hand, this is an easy trap to avoid because if I simply refuse to
cooperate, Bob will be forced to look to his fellow students for feedback. “Don’t
look at me,” I tell him. “I already understand this stuff. Ask them if they do.”
When Bob turns to the other students, they must actively engage his work in
order to evaluate it.
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On the other hand, I find that I must work to stay impassive. My students
rapidly learn to read my facial expressions and body language. I am not exactly
a poker-face by nature! Actually, when I taught Foundations a few years ago, I
may have gone overboard in my effort to avoid giving anything away. Word got
back to me that some students thought I always looked bored. Actually, the
reverse was true. Probably the more bored I looked, the more interested I was,
and the harder I had to work to contain my reactions.

Misplaced student solidarity.

When Karen presents a problem at the board, the other students hesitate to ask
any questions or make any comments about her presentation. They think that
this would amount to a personal attack. Ironically, this is far more terrible for
Karen, whose work is met with stony silence and downcast eyes. (As a teacher, I
know of no more disheartening reaction than that!) This is perhaps the hardest
problem to fight. Students think they are doing Karen a favor by keeping silent.
Worse, Karen may agree, at first. Her response to her ordeal may be, “Just
think how much worse it would have been if they had spoken up!” I tell the
students, quite frankly, that by not reacting in any way they are leaving Karen
quite alone at a time when she feels most vulnerable and most desperately needs
to feel that she is part of the group.

I repeatedly stress the fact that the work of the class is a cooperative effort.
The students sitting down not only help themselves, but they help Karen by
asking questions and making comments that allow her to make the clearest
possible presentation of a correct proof.10

I also stress that there are ways of asking questions and making comments
that are polite, friendly, and non-threatening.

I am a little confused about how you got from the third to the fourth
sentence. Can you clarify that for me?

is much nicer than

I don’t think you justified that very well. I think you ought to explain
it better.

When a particular point is confusing and Karen is having trouble clearing it
up, I often open the floor to the whole class. The students who understand this
point all try to think of wording that will make it clearer; this helps everyone
and takes the “spotlight” off of Karen. Furthermore, when Karen makes a
good, clear and correct presentation, I tell students that they should feel free,

10One thing that helps at this point is that if Karen’s proof is actually in error, she is
penalized in no way. On the contrary, the problem is now “hers.” She is given until the
next class period to correct her error (consulting with me, if necessary) and then another
opportunity to present her corrected proof. I keep no record of the false start. Since this is
so, students don’t feel as reluctant to point out an error if it is present.
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indeed obligated, to tell her that she has done a nice job and that they have no
questions. Stony silence is no fun here, either.

Once students start making comments, it doesn’t take long before they re-
alize that it is helpful and more fun for everyone (including whomever is at the
board) if a lively discussion accompanies class presentations. This makes the
class proceed a lot more smoothly and productively.

I have heard a suggestion that I think is great but my own temperament
prevents me from pulling it off very successfully. A rule can be made that
allows the instructor to ask any question she likes, but never of the student who
is at the board! She may only ask questions of the students who are sitting
down. Students in the class who ask (substantive) questions of the person at
the board are exempt from being asked a question by the instructor. This tactic
can be used to get a discussion going if there are questions silently hanging in
the air. (The best thing is that if the instructor carries this off successfully a
few times, the students will ask questions to preempt the possibility of being
asked questions themselves—thus voluntarily doing what one wants them to do
anyway.)

Becalmed

No matter what I do, there are times when the work of the class slows and
the students aren’t solving problems fast enough to fill up the class period. This
seems to stem from a combination of two factors: the work in Foundations is
getting harder, and the work in other classes is piling up. The first of these
factors slows progress despite the students’ best efforts. As for the second, since
most presentations in Foundations are done by volunteers, the paper that is due
tomorrow in political science takes precendence over the work (that they can
leave to someone else) for the Foundations class. “I will volunteer next week.”
The problem with this, is that English classes, history classes, sociology classes,
and art history classes all over campus have papers due that same week. Too
many students end up thinking that someone else will be there to volunteer.

Attempting to wait out the situation (thinking “They will have gone much
further by the next class period”) seems to give the disastrous signal that it
is alright if a class period or two go by without any student having a problem
to present. However, I have found a simple way to get things going again. I
divide the class into small groups and assign specific problems to the groups.
Somehow, when fellow students are depending on them, students find the hours
and the ability to get the work done, and in good time.

This strategy has never failed to get things going again. After the groups
have presented their work, I go back to the volunteer system. The transition
back has never posed any problems.
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Group Work

When the class gets “becalmed” or when we are studying a section that
contains many problems, it is useful to divide the class into small work groups
(of 3-4 students), each of which is responsible for presenting specific problems
to the class. The problems assigned to a single group will not be consecutive
problems. I make the assignments in such a way that the various groups will
take turns presenting their work. Thus each group must be prepared to present
one or two things during each class.

How I Constitute the Groups

• I try put people who are already work regularly (and effectively) together
into the same group.

• I try to match the abilities of students that are working together. I have
found that if a group has a strong student and a couple of weak students
in it, the strong student will have solved the problem before the weak
students have a chance to thoroughly think it through. Then the tendency
will be for the student who has worked out the ideas to simply “fill the
other students in.” They will not get nearly as much out of this as they
would if they had been in on the original thinking.

• If I have identified any students who don’t work very hard, I try to put
them together. They may sink each other, or they may start working since
they are on the spot and have no alternative!

How I Assign Work to the Groups

• I try to make sure each group is working on a varied enough collection of
arguments that the members of the group will have to understand all of
the major ideas in the section. This prevents students from just ignoring
an important definition. (Though each group will only be presenting spe-
cific problems, I tell the students that they are still responsible for reading
all the material—which includes doing the examples and exercises—and
understanding the definitions and the statements of the theorems. Nev-
ertheless, I suspect that students don’t pay as much attention to ideas on
which they are not going to be immediately and thoroughly grilled!)

• I try to rougly match the difficulty of the assigned problems to the abilities
of the students in the group. The weaker students thus work on problems
that are tractable for them, and the stronger students get problems that
give them a bit of a challenge.
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Class Logistics

• The various members of the each group take turns being the presenter of
the group work. I usually assign sufficiently many problems so that each
member of the group will have to present something. This assures that
every person in the class will present a proof during these few days.

• We go through the material in the book as we ordinarily would, but instead
of asking for volunteers, I just call on the group that is responsible for
presenting a particular proof.

• In order to make sure that students are carefully following the work of
other groups and participating in their presentations as usual, I sometimes
make a written assignment in which students must write up (in their own
words) proofs of theorems presented by people in other groups. (I tell
them ahead of time that such an assignment is coming, but I don’t specify
the particular problems until after the presentations are finished.) This is
a pretty straightforward assignment for them, but it keeps them honest.
It is easy to tell when students are just parroting, without understanding,
what was presented in class.

Things move quickly and smoothly. The quality of the work is at least as
good if not better than it is when we are working entirely with volunteers.
There seems to be no problem going back to the volunteer system when the
group assignments end.
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Results

We started teaching Foundations at Kenyon about a dozen years ago. Since
then, the mathematical maturity of our junior and senior math majors has
noticeably improved. Furthermore, now that we can assume a certain core of
knowledge and experience in our students, our upper-level theoretical courses
“get off the ground” more quickly and thus go further. As an added bonus, this
course has helped us recruit some very bright students for the math major.
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Part II

Chapter by Chapter

Chapter 0—Introductory Essay

This chapter sets the stage for the rest of the book, but no later chapter depends
on it in any specific way. Nevertheless, I like to have my students read it because
it lets them know right from the start that the “game” has changed—that this
course will be very different from their previous math courses.

The chapter is not difficult and should only take 15–20 minutes to read. We
do not spend a great deal of time on it in class. I let the students’ own impres-
sions and questions fuel the class discussion. This is a good, non-threatening
way for students to become immediately involved, and it establishes the notion
that they will be the driving forces in the class.

Saving time

Chapter 0 can safely be skipped if time does not permit you to cover it. I have
sometimes skipped it myself. Alternatively, I have instructed the students (by
electronic mail) to read it before the first class meeting, as a basis for a class
discussion. However, some students understandably think that giving homework
before the first class period is a dirty trick.

Chapter 1—Logic

As I’ve said before, I want to avoid lecturing early in the course. This is
especially true on the first day. I have experimented over the years with several
strategies for productively using the first day without lecturing.11 When I was
preparing the second edition of the book, I decided to include a set of questions
at the beginning of the chapter on Logic. The students would start out by
working to determine which of the questions were true, which were false, and
by trying to prove their answers. The result was Section 1.1. I think of this as a
“thought experiment.” Students are tapping into their intuitive understanding
of what it means to be true or false, and what it means to prove that something

11Including, as I said above, giving a reading assignment before the first day of classes.
I also tried using the computer game Minesweeper to talk about strategies for proof. (See
“Introducing Proof Techniques Using the Logical Game Mine Hunter,” PRIMUS, June 1995.)
This worked pretty well, but I decided that I needed to give it more than one day to make it
a worthwhile experience, and my priorities took me elsewhere.
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is true or false. Some of the questions that the students work on are discussed
again later in the book, many in Chapter 1. I have had the opportunity to
use this activity only once, a few weeks ago, but on that occasion it worked
well. The students seemed to enjoy it, and they were actively engaged in doing
mathematics on the first day of the course.

The chapter on logic is tricky in a number of ways. On the one hand, the
material in it is crucial; if the students don’t get a good grasp of it, they will
soon encounter difficulties. On the other hand, the students are studying only
logical principles and are not really being trained in their use at this time.12

Thus it is very important to go through the ideas in the chapter, but it is
counterproductive to spend too much time on them at the outset. I find that
it is much more effective to reinforce repeatedly the ideas of Chapter 1 when
theorems are being proved later on. (See the tips at the end of this section.)

I also want to keep the time spent in Chapter 1 to a minimum, so I compro-
mise by combining class discussion with small group work in class. Chapter 1
is well suited for this. I have found that a fluid discussion that uses certain key
exercises as “jumping-off points” is effective and fairly rapid, and at the same
time gets the students involved. Here are exercises that I have found especially
useful for bringing out the key ideas. Students come to class on the second day
having read through the first part of Chapter 1. The first few pages are fairly
self-explanatory. I take questions if students have them, but rapidly go on to
Section 1.3 if there aren’t any.

• Since quantifiers and quantification are a bit subtle, I lead a discussion
about them centered on exercises 1.3.1, 1.3.2, and 1.3.3. In the course of
discussing these problems, most of the relevant issues naturally arise and
can be clarified.

• Though implication is dealt with quite thoroughly and explicitly in the
text, it is so crucial that I go over the highlights and address specific issues
that are confusing to students. I begin with a short look at Example 1.5.1.
Though it is fully written out in the text, and students rarely have trouble
understanding it, it is a good place to start. This makes sure that the
conversation starts at a place where the students are on solid ground.
I move on to Exercise 1.5.2. Usually I can get a student to volunteer
to present a solution to this problem. The ensuing discussion inevitably
leads to talk about hypotheses and conclusions, counterexamples, truth
and falsehood of implications, and even vacuously true statements.

12As author, I considered whether to include lots of “practice” theorems for the students to
prove along the way. There are a few, but I decided to keep the number to a minimum for two
reasons. First, the chapter on logic would take longer to get through than I (as a teacher) am
willing to give it. I want to get on to the mathematics! Second (and more importantly), since
no framework of assumptions has yet been built—no mathematical content discussed—the
students end up assuming things that are no more well-established than the things they are
proving. It is important for students at this level to learn that when proving theorems they
cannot assume just any mathematics that they have heard about along the way. What they
are allowed to assume and what they are not allowed to assume should be fairly clearly spelled
out for them.
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It can be useful to stress the fact that implication in mathematics is not
a “cause and effect” relationship. This is mentioned in connection with
vacuously true statements, but can be observed in true statements, as
well. Consider, for instance, statements like “If Picasso was a painter,
then most cats have four legs.”

• Students don’t seem to have much trouble picking up how to construct
truth tables. I may work one out at the board with a lot of help from the
students, but no more than that.13 Sometimes I just assign one or two
for the students to work out and turn in. Virtually all students do well
on this assignment, but the homework assignment allows me to catch the
one or two in a class that missed something crucial.

I think it is more important in class to emphasize what may be learned
from truth tables. In fact, to make this idea very explicit, I added a
section in the second edition that does exactly this. I certainly don’t go
through all of the truth tables in class, I talk about the interpretation of
the statements. I try to show students how to “translate” the symbolic
statements into words. To get meaningful statements, they sometimes
have to be flexible about the translation. For instance, I would want my
students to recognize the following parallels:

Symbolic Expression English Equivalent

(A =⇒ (B ∧ C)) =⇒ (A =⇒ B) If the truth of A implies the truth
of both B and C, then the truth of A
implies the truth of B.

(A ∧ (A =⇒ B)) =⇒ B If A is true and A implies B,
then B is true.

When I teach Section 1.7, I spend a bit of time going over all the
principles illustrated there. It is pretty easy to get the students
involved by asking them to participate in the translation process
(once they see one or two they get pretty good at it) and by asking
them to interpret the information contained in the various examples
and exercises.

• The issue of negating statements is very important and students find the
details tricky. I make sure to go over the various examples and exercises
in the section, but it is pretty easy to do by having students give their
solutions to various parts. I usually do this by calling on the students by
name.14 This usually ferrets out individual difficulties that students may
be having and it allows me to clarify the main points.

13It is also workable, but more time-consuming, to have a student present one.
14I have recently started keeping a roster of the class with a little chart that I mark when I

call on a student. I tell students that I am not keeping track of whether they answer correctly
or not, merely whether I call on them. This allows me to be sure to call on all students more
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• The last part of the chapter, Sections 1.9 through 1.14, talk about specific
proof techniques. There are some exercises and problems at the end of
the chapter that are good vehicles for discussing the relevant issues. Even
more than the rest of the sections in this chapter, my general approach is
to cover these sections very quickly and to reinforce the ideas later when
they come up in context. I think, however, it is useful to try to get the
students to articulate in straightforward terms the procedure they will
need to follow to implement each of the various proof techniques. For
instance, they should ideally be able to articulate the procedure for proof
by contradiction, as follows:

Assume that the hypothesis is true and that the conclusion is
false. Then reason until you arrive at a contradiction.

They should be able to give similar short synopses for the other proof
techniques.

Tips for Reinforcing Logic in Later Work

Here are some good and quick ways that I use to reinforce the ideas of Chapter 1:

• When someone is presenting a proof, I get students to tell me what method
of proof is being used. (I don’t necessarily ask the person who is presenting
the proof.) We briefly review the relevant ideas in context.

• For theorems that are not written in the “If A, then B” form, I make
students explicitly state the hypothesis and the conclusion.

• Though I think it is overly pedantic to push this too much early on, it
is occasionally worthwhile to reinforce the distinction between proofs by
contrapositive and contradiction. (Most students at this stage will give a
contrapositive argument and claim it is a proof by contradiction.)

• Students frequently forget quantifiers in their proofs. Point this out when
it occurs and have the students notice the ambiguity (or even error) that
is introduced as a result. In general, push the correct use of quantifiers.
Times where quantifiers need to be negated are also good opportunities
to reinforce the concepts in the Chapter 1.

• If I ask the students a question about logic that they cannot answer,
I make them (physically and immediately) turn back to the chapter on
Logic to look up the answer. This will get them in the habit of looking
back themselves when they run into trouble or confusion. I find that I
have to be patient. At first students try to “wait me out” certain that I
will save them the trouble by giving them the answer.

or less equally. This is good because it makes the students realize that I am not “picking on
them,” but it also makes them acutely aware that they may be called on at any time to give
an answer. I am very happy with the practice.
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• When the first instances of proof by contradiction, proof by contrapositive,
uniqueness, existence and so forth show up, I make the students turn back
to the chapter and to help them recall what needs to be done. (Even if the
student presenting the proof has gone over the ideas and made good use
of them, the other students will benefit from having them highlighted and
illustrated in the context of the correct proof.) It can be useful to point
out specific landmarks, as well. For instance, when a student presents an
existence proof, I get other students to identify the section in the proof
where a candidate is produced and the section where the candidate is
shown to be what is claimed.

Chapter 2—Sets

Once the class gets into Chapter 2, things rapidly settle down into the routine
for the course. In this chapter, students encounter their first “real” proofs in
the form of element arguments. There are also a fair number of exercises that
allow the students to work with set notation and definitions. I have found that
it works well to ask the students to present their solutions at the board. There is
a wide range of difficulty in the problems that the students are asked to tackle;
several have multiple parts. It is an ideal time to encourage every student in the
class to get involved. I do this by asking for volunteers in some some situations
and by calling on specific students in others.

I always make one or both of the DeMorgan laws a written assignment. This
assures that every student in the class has personally slogged through at least
one element argument involving general indexing sets.

In the interests of time, I skipped Theorems 2.4.6 and 2.4.11, but I suggested
them to students who wanted more practice with the notation and language.
Other than that, I covered 2.1 very quickly, and I did pretty much everything
else in Sections 2.2–2.4.

A Tip: I think that (in the interests of clarity) it is a
good idea to begin by spelling everything out. But after
the first couple of element arguments, I start suggesting
to students that some things are understood by all and do
not need to be spelled out. For instance, they do not need
to start each element argument by writing that they must
show each set is a subset of the other. They just need to
indicate clearly to the reader that each of these parts is
taking place.

The power set is a completely new notion to most students, and they will
probably need some choice hints and advice, but Section 2.5 seems to come
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along without too much fuss. I chose not to have the students work through
Problem 2.5.7. However, the ideas of that problem are central to initial discus-
sion of induction, so it is necessary to at least give a good intuitive discussion
before proceeding to Chapter 3.

I have my students read the section on Russell’s paradox and talk about it
a bit in class, but I don’t dwell on it.

The Rough Spots

Few students experience major mathematical difficulties in Chapter 1, but
most run into a few problems in Chapter 2. I think the obstacle is primarily a
difficulty with language, not a conceptual one.

The element argument that is written out in detail (ad nauseum)in Exam-
ple 2.4.2 really helps students get started. Most, using this as a guide, can
produce the proof required in Exercise 2.4.4. With a small nudge in the right
direction they can also get problem 2.4.8. However, almost all of my students
run up against a brick wall when they encounter the more general formulations
involving the arbitrary indexing sets.

I have found that two things really help the students to overcome this hurdle.
One is just to work with indexing sets, demystifying them a bit. (Exercise 2.3.15
and Problem 4 on page 54 should help with this.) This is a start, but the
real stumbling block is that the students don’t have the insight to go from
language like “x ∈ B or x ∈ C” to “x ∈ Bα for some α ∈ Λ.” The use of the
quantifier is not intuitive to them. As a result, the second edition includes, in
Example 2.3.12, some explicit hints about the use of language. This helped my
students this semester, but they still struggled with the language. I spent a lot
of time working with individual students on this, and it took them some time.
But in the end, most got it. For students that are having extreme difficulties, I
would suggest working directly on a “translation” of the proof of Theorem 2.4.2
into the language of the more general setting. Writing the two arguments side-
by-side on a sheet of paper, having the student help you recast each line into
the language of general indexing sets can be extremely helpful.

On the principle that being forewarned is being forarmed, one more thing
seems worth mentioning. Some students will try to say that:

If x 6∈ Aα for some α ∈ Λ, then x ∈ ACα for all α ∈ Λ.

This baffled me at first, but then I realized something. The students that say
this view the transition from x 6∈ Aα to x ∈ ACα as a negation. They have
absorbed enough to know that when you negate a statement involving a “for
some,” you should end up with a statement involving a “for all.”
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Chapter 3—Induction

For the second edition, the chapter on induction has substantially rewrit-
ten,15 and I have placed it earlier in the book. My main goal, however, re-
mained the same. I have noticed that students usually understand the principle
of induction and readily learn how to use it to prove simple number theoretic
results like the standard sums of consecutive integers and squares and so forth.
The trick is imparting the nuances of proof by induction. Induction shows up
in many contexts and takes on subtly different guises in those various contexts.
Different uses of induction may look very similar to a seasoned mathematician,
but, in my experience, many students who have seen induction in one context
have trouble applying it (or even recognizing it) in others. So I believe it is
important to give students the opportunity to see induction at work in different
contexts.

The chapter is divided into two major parts. The first part (Section 3.1) talks
about what mathematical induction is doing and why it works. The second part
(Sections 3.2 and 3.3.) has the students using induction to prove some simple
theorems. I have found, first of all, that it is very important to stress the fact
that Section 3.1 is not talking about how to use induction, but merely about
how it works. Otherwise, students try to use the proof of 3.1.2 as a model for
using induction. This leads them wildly astray!

To help with this transition, I have started Section 3.2 with an example in
which induction is used to prove that a set with n elements has 2n elements.
(This proof relies on Problem 2.5.7, so at least the basic ideas underlying this
problem need to be covered before the section on induction.)

After discussing the Principle of Mathematical Induction on one day, I had
students work on Problems 3.2.2-3.2.6 in class the next time. In this way, I was
able to circulate among them stressing the major issues behind induction and
helping the students see how to implement them in a few simple cases. I had
my students write up and turn in solutions to Problems 3.2.5 and 3.2.6. In the
following class, students worked on Problems 3.2.2 and 3.3.3 which are somewhat
more difficult. These problems, I also had them write up and turn in. Though
I hesitated in some ways to spend three full days on this chapter, I found that
my students really needed this length of time on what is a surprisingly delicate
topic.

Chapter 4—Relations

After Chapters 2 and 3, students are at the same time more confident about
doing proofs (they managed to survive!) and apprehensive that the next chapter
will bring another jump in difficulty equal to the last. It doesn’t. In fact, for

15The treatment in the first edition really didn’t work very well.
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a while in any case, things get easier. Checking that relations are reflexive,
antisymmetric, etc. comes easily to most students. The work in the chapter
gradually gets more difficult, but students seem to handle it pretty well.

Section 4.1—Relations

I cover pretty much all of 4.1, perhaps picking and choosing among the exercises.
This is one of those places in which some problems are so easy and self-evident
that students will become sloppy about writing things down. The tendency
is to write “Reflexive? Yes,” and leave it at that. Therefore, when covering
the problems in this section, especially 4.1.9 and 4.1.10, I mix oral discussion
with board presentation. This makes things go faster and avoids sloppy board
presentations. Working through a number of exercises helps to clear up the
occasional confusion about reflexivity, symmetry, etc. that can lead to trouble
in the rest of the chapter.

Section 4.2—Orderings

There are a lot of important concepts defined in this section. However, at
this point in the book, most of them are not taken much beyond understanding
the definitions and looking at examples. They really come into their own only
later when they are used for something like comparing cardinalities or describing
the real number system; thus 4.2 seems a mere hodge-podge to some students.
I often just warn them about this from the outset.

From the point of view of the class dynamic, there are really five short but
identifiable “stages” in section 4.2. (Each arising from a new set of definitions.)

Stage I Getting comfortable with the initial definitions. (From the beginning
of the section through Exercise 4.2.9).

Stage II Lattice diagrams and associated exercises. (Starting with lattice dia-
grams and going through Example 4.2.10).

Stage III The contrast between maximal and greatest elements. (Definition 4.2.11
through Theorem 4.2.15).

Stage IV Immediate successors and predecessors. (Definition 4.2.16 through
Theorem 4.2.18).

Stage V Least upper bounds and the least upper bound property. (The rest
of the section).

Stage I—This is the first time that the students have had to work through
a serious abstraction of a structure with which they are really familiar. They
accept the definition of partially ordered set amazingly placidly. This is under-
standable since they have just spent a whole section talking about reflexivity,
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antisymmetry, and transitivity. They feel pretty comfortable with these con-
cepts, and (thinking of the reals) see the rationale in linking these with the
symbol ≤. However, I remain a bit wary. For some students, the comfort comes
entirely from the familiar symbol ≤. They think they know exactly where they
stand: squarely in the real numbers!16 These students really get hung up on the
definition of totally ordered set. They cannot imagine what it is trying to tell
them; as a result, exercise 4.2.4 (P(S) is not totally ordered under ⊆), simple as
it is, is beyond them. I find it to be worth my time to pause a little more than
seems necessary on this exercise to give the students who are baffled some time
to catch up. Exercise 4.2.7 is a little harder for the students, but once they have
thought their way through that one virtually all will be “with the program.”
The easy proof of Theorem 4.2.6 is very comforting to students who have been
feeling lost.

Stage II— Students have remarkably little trouble with lattice diagrams. Many
students enjoy the puzzle associated with classifying all partial orders on sets
with four elements. (A number of students enjoy it so much that they insist
on working through the entire classification of partial orders on sets with 5
elements!) But the informal look at order isomorphisms can be skipped in the
interests of time. If you decide to skip it, however, you will still need to go over
the diagrams. They are used to illustrate the differences between maximal and
greatest elements, lack of uniqueness of immediate successors, etc. They give
the students a picture of partially ordered sets that are not totally ordered.

Stages III and IV
Students’ intuitions about the differences between partially and totally or-

dered sets are sharpened considerably by the contrast between maximal and
greatest elements (and continue to sharpen throughout the rest of the section).
Exercises 4.2.12 and 4.2.13 are excellent introductions. For sharpening students’
instincts, I recommend Problems 8 and 10(a-d) at the end of the chapter.

By the way, the examples I have in mind for the third and fourth parts of
Problem 8 are an increasing convergent sequence with the limit “on the top”
(the ordinal ω + 1) and a sequence of increasing convergent sequences in which
the limit of each sequence is the first element of the next (the ordinal ω2).
However, I have gotten a number of very different (and correct) examples from
students over the years.

Stage V—Though students will struggle a bit with these definitions, but Ex-
ercise 4.2.21 and Problems 9, 10(e,f) and 11 should really help work the kinks
out. Theorem 4.2.26 has always given my students problems. The extensive
hint that I put in the first edition didn’t really seem to help, so for the second
edition, I have separated out a lemma that really does seem to help. Two (very
good) students in my class this semester, did these problems without talking to
me, and did a very good job.

16In fact, I have to continually remind some students that the symbol ≤ does not in general
represent the ordinary “less than or equal to” on R even if we use the same words and symbol
to refer to them!
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Section 4.3—Equivalence Relations

One often hears math students say: “Equivalence relations are pretty easy—
except all that stuff about partitions and equivalence classes. I never understood
that.” Sadly, the fact that they didn’t really get the stuff about partitions
doesn’t seem to worry them too much. In their view it was secondary, not the
main idea. This is, of course, not the case at all; we mathematicians usually
think of partitions first when equivalence relations come up. Thus when I set out
to talk about equivalence relations, I decided to start by talking about partitions,
bring up relations only afterward, and show that a partition naturally gives rise
to a reflexive, symmetric and transitive relation—all this before ever defining
an equivalence relation.

In my experience, students initially have trouble with the definitions of the
relation associated with a given collection of subsets and the collection of sub-
sets associated with a given relation. Therefore, I start by giving a reading
assignment that goes through Problem 4.3.13 while students are still presenting
problems from section 4.2. I spend 15 minutes at the end of a class period
discussing Problems 4.3.12 and 4.3.13. In an effort to be as concrete as possible
in 4.3.13, we actually poll members of the class to get the information needed
for the problem. Then we write down specific subsets and ordered pairs. In
closing, I tell them to take another stab at any problems they couldn’t do be-
fore and to do so as soon as possible (immediately after class is best!). I also
assign problems 14 and 15 (Page 99). All of these help them to cement their
understanding of the definitions.

By this time, students are fairly comfortable with the transition from re-
lations to subsets and back. They have proved that a relation generated by
a collection of subsets. They are ready to show that a collection of subsets
whose union is the underlying set yield a reflexive relation and that a pairwise
disjoint collection yields a transitive relation. I have them work out proofs for
4.3.15–4.3.17 and present those results in class. These establish finally that the
relation induced by a partition is reflexive, symmetric and transitive, thus mak-
ing the definition of equivalence relation a natural one. Though some students
struggle through this, there always seem to be volunteers ready to show their
work. After the students have understood 4.3.17, we talk about the significance
of Lemma 4.3.20 and Theorem 4.3.21 (an equivalence relation gives rise to a
partition), and I assign these to student as a written assignment. I may give
them some class time to work on these in small groups, but I let them work on
it outside of class for a bit first.17 In class we discuss the notion of equivalence
classes pretty thoroughly. I make sure that Exercise 4.2.23 is well understood,
perhaps by alternating discussion with short (2-3 minute) work times in class.
If time permits, I have them work through some or all of Problem 16. I always
assign Problem 17 (the rational numbers as equivalence classes of pairs of inte-
gers) because it lets the students know that in some limited contexts they have

17Some students will struggle with this, but I think it is very important for everyone in
the class to completely internalize the details of this argument. It makes sure they really
understand the notation and the ideas. Both of which are very important.
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been working with equivalence classes for years. Furthermore, gives them some
insight into the use of the word “equivalent” in this context.

Section 4.4—Graphs

The section on Graphs is self-contained and may be included or not. It is
new to the second edition, so I have not yet had a chance to use it in a class.
I included it for several reasons. First of all, this is a nice topic that shows a
different and very important application of relations. It is a topic that students
really like. And it immediately provides a nice variety of accessible (while still
non-trivial) results for the students to work on. This is an especially auspicious
place to show the usefulness of mathematical induction. It is easy to draw
pictures and there is a sufficient variety of interesting behavior in graphs that
students can (and do!) make interesting conjectures. Better yet, the proofs (or
disproofs) of those conjectures are often within their reach.

Time may not allow me to cover Section 4.4 in the course that I teach, but
I would really like to. (It will certainly be the first thing that gets covered if I
have some time at the end of the semester!) I may well assign a small piece of it
on a takehome exam—this is a good way to test my students’ increasing ability
to read a definition or two and bring to bear proof techniques and strategies
they have been learning. (The difficulty here is the number of words that need
to be defined in order to be able to say something of consequence!)

Chapter 5—Functions

The first few sections of Chapter 5 really seem to bring things together for
the class. This is partly due to the fact that students are becoming a bit more
relaxed about the idea of proving theorems and partly to the fact that they
contain many propositions with accessible proofs. Most of my students find
that with some work, they can really get these proofs, and there are enough so
that many different students can have a turn at the board. The fact in the study
of functions students start to see real connections to their previous mathematical
experience is also very important. Even the most skeptical students begin to
see why someone18 would actually care about this.

Section 5.1—Basic Ideas

The definitions of function, domain, codomain, range, one-to-one and onto
seem to come fairly easily to students. I usually spend one day on this section
in which we talk through or present the exercises that students were asked to

18For the really hard core applied people, it still may not be them, mind you, but progress
is progress!
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do when they read the section. Important questions are answered as a matter
of course in doing this.

There is one major addition for the second edition. After the first edition
of Chapter Zero was published, I needed one more “really easy” problem for a
takehome exam I was writing. I gave my students an explicitly defined function
from R to R and asked them to show it was one-to-one and onto. I made sure
the algebra involved was straightforward. I was flabbergasted that few students
had any idea even how to begin! Despite the fact that we had been very explicit
about how one should proceed when trying to show a function was one-to-one
or onto, the students were not able to see the connection between our approach
to proving that “the composition of two one-to-one functions is one-to-one”
and proving the same thing for an explicitly defined function. They needed
to see a wider variety of applications to get the general message. As a result,
the second edition includes some straightforward problems involving explicitly
defined functions. (Exercises 5.1.14 and 5.1.15; Problems 1-3 at the end of the
chapter.) These can be skipped, if necessary, but I strongly recommend them.
In a related concern about lack of intuition about how these notions apply to
real valued functions, I also added Exercises 5.1.4 and 5.1.11. These exercises
make students explicitly articulate the connections between intutitive ideas and
the mathematical definitions that are being considered.

Sections 5.2 and 5.3—Inverses, Images and Inverse Images

Sections 5.2 and 5.3 ask the students to prove a large number of theorems;
fortunately, most are accessible and even students who have been stumbling to
this point find they can really sink their teeth into these. They can draw mean-
ingful pictures, and a careful articulation of what they see in the picture usually
constitutes a proof, or nearly so. It is a time when the hard (and sometimes
frustrating work) of earlier in the semester really pays off. I recommend pointing
this out to your students. They appreciate the praise, but more importantly,
they surprise themselves by realizing that you are right. Things have slipped
into place and proving theorems has gotten easier. With a little nudge from you
they can see just how far they have come in a few short weeks.

The downside of the large number of propositions is that the sections invari-
ably take quite a while to get through. Even if students present one proof right
after another, I can count on staying in 5.2 and 5.3 for a while. I have found
that if I have all of the students working on all of the assigned proofs, as is my
usual custom in other sections, volunteers fight for the first few and then things
bog down.

My standard solution to this slowing effect is to divide the class into groups
of three or four and divide up the theorems among the groups. This strategy
keeps things going pretty well, and has a secondary positive effect. The less well-
prepared, intimidated (or lazier) students can no longer sit back and let the best
students present all the proofs. Since they have specific proofs that they know
they will be responsible for, they end up working on them with perhaps more
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determination than they have shown to this point. It works very well. (See the
discussion starting on Page 26.)

A Tip: There are a large number of problems at the end
of the chapter that can be used to supplement the work
in this section. Basically, I have put all the good test
questions I came up with over the years at the end of the
chapter as problems. I am not sure what I will do for test
questions, but I think the book is the better for it!

The Rough Spots

Theorems 5.2.7 and 5.2.9 deal with the existence and uniqueness of the in-
verse function. This was stated much more compactly in the first edition of
Chapter Zero, but there was so much going in the theorem on that my students
found it impenetrable. In the last few years, I have made it a habit to present
my own proof of the theorem in a lecture format. This has had several advan-
tages. It showed the students a well-presented proof of a fundamental result
and allowed us to move ahead relatively expeditiously. It came at a point in the
semester when students no longer considered it “my job” to lecture to them.
Thus when I did, they viewed it as a treat and had no problem going back to
presenting their own work when it was over. Furthermore, I could assign other
proofs to the groups and give them some time to work on their problems before
they had to come back with completed proofs. For the second edition, I have
broken up the theorem into smaller, “bite-sized” pieces that I hope will be more
tractable for the students. I will probably assign various parts of these to the
groups. But lecturing on this is still a good option, I think.

Some of my students have had problems with language in Theorems 5.3.6
and 5.3.11 (images and inverse images of intersections and unions)—mainly,
this follows from not understanding and using the definitions. For instance, in
the problems that deal with inverse images, there is always a large contingent
that tries to muddle through by slinging notation around. Invariably (despite
the text’s warnings to the contrary) this results in an implicit assumption that
f−1 is a function, and everything falls apart from that point on. Placing some
emphasis on Exercises 5.3.3 and 5.3.9 should help with this problem. I believe
the issue is mostly a deficit of language which is precisely what these simple
exercises deal with.

Problem 5.3.12(2) (when is the inverse image of the intersection the same
as the intersection of the inverse images?) can be problematic because students
ignore the phrase “for all choices of {Tα}α∈Λ.”19 It is worth pointing out the
significance of this statement to the students that are working on the problem.

19This is not too surprising. They have done precisely this in propositions 5.3.6 and 5.3.11
and nothing bad has happened. Here it is really an issue for the first time.
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(I also mention that they had better use the fact that f is one-to-one when
proving that ⋂

α∈Λ

f(Tα) ⊆ f(
⋂

α∈Λ

Tα).

The careless ones often convince themselves with a false proof that doesn’t use
the hypothesis.)

Section 5.4—Order Isomorphisms

On the one hand, this is an easy section to skip if the class agenda demands
time and attention elsewhere. On the other hand it is a short section, and I like
to include it for a couple of reasons.

First of all, the students immediately begin to build on the ideas of the pre-
vious two sections. Here they see one-to-one correspondences in action. Second,
and more importantly, studying order isomorphims sows a seed that may well
prove fruitful in the students’ further mathematical studies: the general concept
of one-to-one correspondences that preserve mathematical structure. Students
often find the concept of isomorphism hard to penetrate. The more different
notions of isomorphism that students see, the more they will be able to grasp
what is going on. I believe that order isomorphism is a good place to start;
the lattice diagrams allow students to clearly see why we call these identical
mathematical structures.

Section 5.5—Sequences

Though all of my students have seen sequences in a calculus course, I found
them unprepared to handle sequences and sequence notation at the level that
I expected in a Real Analysis course. Seeing this, furthermore, as a venue in
which students could further expand their notion of the concept of function, I
decided to include this section in the book.

After I did, I found a number of places where I could use the notion in later
chapters. It plays an important role in the chapters on Cardinality and the
Real Number System. This section, however, mostly establishes notation and
language. I cover it quickly and reinforce important notions when they come
up later on.

Subsequences and subsequence notation, in particular, seem to give my stu-
dents some difficulty. The essential idea is a very simple one, but the notation
required to express this idea precisely the students find to be more complex.
Thus the discussion of subsequence notation is expanded to be more explicit in
the second edition of Chapter Zero. I also gave an expanded discussion of how
to use mathematical induction in the construction of subsequences.

Subsequences, however, do not play a large role in the remaining chapters
of the book, so (from the point of view of this book) these sections can safely
be skipped, if you are willing to let the occasional appearance of subsequences
be handled somewhat loosely.
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Section 5.6—Binary Operations

This section is best covered quickly. Though the ideas discussed are impor-
tant ones, they are not deep. In fact, things like commutativity and associativity
ought to be known to the students already. What this section brings to students
is a mathematical framework for familiar ideas and perhaps a slightly different
perspective on some of those ideas.

The exercises should be straightforward (though a few will require a little
thought/work), and the students should be able to grasp the basic ideas without
too much trouble.

I assign the section to be read, and spend some time answering questions
and going over exercises in class.

Chapter 6—Elementary Number Theory

My goals in this chapter are at least as much algebraic as number theo-
retic. Though I could have chosen to approach Number Theory from a variety
of different perspectives, I chose to concentrate on the theme of divisibility. It
naturally leads to some important number theoretic concepts, and it also rep-
resents a useful first step for students who will eventually end up in an abstract
algebra course.20

The final discussion of divisibility in Zn gives the students the key ingredient
of the proof that Zp is a field under the operations of addition and multiplication
modulo n, and it reveals the essential number theoretic underpinnings of that
fact. Moreover, it will give them some insight into distinctions between fields and
rings: Now you can multiply. When can you divide? Many ideas in elementary
abstract algebra have roots in number theory, yet this “ancestry” is often unclear
to students. Covering this chapter, will allow them to explore these ideas with,
perhaps, a bit more leisure than is to be had in an Abstract Algebra course.

The ideas are developed cumulatively; thus there are not so much natural
breaks in the chapter as stages along the way.

• The well-ordering of N .

• The division algorithm.

• Divisibility, prime numbers, divisibility as a partial order.

• Common multiples and common divisors.
20The natural jump from integer to modulo arithmetic will give students a leg up on thinking

about quotient structures and well-definedness of operations defined on equivalence classes.
More importantly, once students who have studied from Chapter Zero encounter an abstract
quotient structure, I hope they will see it as the obvious generalization of a mathematical
structure that crops up (fairly) naturally in the integers.
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• The Euclidean Algorithm.

• Relatively prime integers, greatest common divisor as a linear combina-
tion.

• The fundamental theorem of arithmetic.

• Congruence modulo n.

• Addition and Subtraction of Congruence classes modulo n. (Including
well-definedness of the operations.)

• When do partitions of Z yield well-defined operations?

• Divisibility modulo n.

Saving Time

The Euclidean algorithm and the fundamental theorem of arithmetic can, in
principle, be skipped since they are not subsequently used in the book.

Chapter 7—Cardinality

Sections 7.1 and 7.2—Galileo’s paradox and Infinite Sets

Depending on the amount of time I have, my goals in chapter 7 vary. If I am
rushed, my goals are very modest and I mostly try to get across the “basics”
about countable and uncountable sets. Roughly speaking: the natural numbers
and and the rational numbers are countable, the real numbers are not. If time
is short, I want to spend most of that time in sections 7.3 and 7.4.

Nevertheless, I do some time in sections 7.1 and 7.2. These set the stage for
some of the issues that will be considered later and they help ease the students
into the ideas. There is really only one thing in these two sections that will be
time consuming, and that is the characterization of infinite sets (Theorem 7.2.5).

Saving Time

Saving Time Despite the generous hints, students find the characterization of
infinite sets to be fairly challenging. So when I ask the students to work on the
proof, I usually divide the class into four groups and have each group work out
one piece of the proof. When I don’t want to take a lot of time on Theorem 7.2.5,
I adopt one of three time-saving measures.
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Fast I write up the proof myself and present it lecture-style.

Faster An intermediate strategy is to elaborate on the hints given for the proof
with some pictures and other explanations that help the students see how
the arguments would work if they tried to work out the details. When I
do this, I may hand out a written proof that takes care of the details.

Fastest I limit myself to discussing the informal scenarios that motivate the
theorem and skip the proof.

Sections 7.3 and 7.4—Countable and Uncountable Sets

The information in sections 7.3 and 7.4 is pretty much the standard stuff
on cardinality. It is worth noting that the proof of Theorem 7.3.5 requires the
Axiom of Choice. I make no mention of this in the book. (Most students will
appeal to this intuitive notion without a second thought.) Nevertheless, if time
permits, it is nice to bring up an informal discussion of the Axiom of Choice, at
this point.

Cantor’s diagonalization argument is fully written out in the section. In a
book that requires students to devise virtually all the proofs themselves, stu-
dents aren’t forced to develop the (non-trivial) skill of reading a “textbook
proof.” This gives them one really good chance to do that. In my experience,
some students will have trouble understanding the write-up. I try not to explain
it to them. As usual, I try to lead them through the argument, perhaps helping
them construct an example.

The Rough Spots

The generalized Cantor argument (Theorem 7.4.8) tends to throw students
for a loop. Exercise 7.4.7 is new in the second edition. I hope it will help
students with the notation. However, even those students who could make it
through the logic (I give a pretty big hint, so many of them do), have a heck of
a time seeing any connection between Cantor’s diagonalization argument and
this one. Looking at the form the argument takes when A is N , can really help.
It can also help to make Problems 7.4.9 and 7.4.10 more meaningful.

Consider any function f from nat into P(N ). It would “look” something
like this:

1 −→ {1, 3, 4, 5, . . .}
2 −→ {1}
3 −→ {2, 4, 6, 8, 10 . . .}
4 −→ {3, 4, 5, 6, 7, . . .}
... −→ ...

...

Given Exercise 7.4.7, students should be able to (at least partially) identify
the set J that is obtained using the diagonaliztion procedure, but this doesn’t
really help them to connect this with Cantor’s argument.
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Suppose we associate each subset of Nwith a sequence of 1’s and 0’s as in
Problem 7.4.9. 21

1 2 3 4 5 6 7 8 9 10 11 12 . . .
{1} 1 0 1 1 1 1 1 1 1 1 1 1 . . .
{1} 1 0 0 0 0 0 0 0 0 0 0 0 . . .
{2, 4, 6, 8, 10, . . .} 0 1 0 1 0 1 0 1 0 1 0 1 . . .
{3, 4, 5, 6, 7, . . .} 0 0 1 1 1 1 1 1 1 1 1 1 . . .
...

...
...

...
...

...
...

...
...

...
...

...
... . . .

Now if we look at the chart corresponding to our function f above, we see
that we look at the nth slot on the nth line and “reverse it.” That is, if the nth
slot on the nth line is a 1, J will have a 0 in the nth slot. If it is a 0, J will
have a 1 there. It is now easy to see why this is a generalization of Cantor’s
diagonalization argument.

Sections 7.5 and 7.6—Comparing Cardinalities

Though well-definedness may require a bit of discussion (especially if you
have not previously covered modulo arithmetic in chapter 6), the only part of
Section 7.5 that will give the students serious pause is the proof of the Schroeder-
Bernstein theorem. Even with the detailed proof sketch, most will have to
struggle to see what is going on, and struggle again to write the details. I find it
worth my while to spend some time discussing the pictures in the proof sketch
so that students will understand what the issues are and how the idea of this
proof resolves those issues.

I hope that students will be sufficiently intrigued by the discussion of the
continuum hypothesis in Section 7.6 to go off in search of more. Even those
students that don’t feel compelled to find out more will be made aware of one
of the more famous undecidable propositions of set theory and, more generally,
of Godel’s theorem.

There is one subtle mathematical issue that you may want to bring up with
your students while discussing the proof of Theorem 7.6.1 (R and P(N ) have
the same cardinality). Why can’t we just construct a one-to-one correspondence
between the characteristic functions of the subsets of N and the binary expan-
sions of numbers in (0, 1)? The answer, of course, is that the binary expansions
.1000 . . . and .01111111 . . . represent the same real number. However, the sets
{1} and {2, 3, 4, 5, . . .} are by no means the same.

21This exercise can help to make the idea of a characteristic function a bit more concrete
for the students, and they can be reminded that a function from N to {0, 1} is just a sequence
of 0’s and 1’s.
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Chapter 8—The Real Numbers

Sections 8.1 through 8.4—The Axioms

When I set out to write about the axioms for R , I wanted to do more than
just list them and go on to prove theorems. I wanted students to come away
with a strong sense that the various axioms are there to accomplish very specific
jobs, so I spent a lot of time (indeed most of the time) talking about how we
decide what axioms to choose. The words I use in the text are desirability and
necessity. The axioms we choose are desirable because they assign to the real
numbers properties that we intuitively know they should possess. How do we
know they are really necessary? Before we choose each axiom, we show that
the choice is necessary by demonstrating that the previously chosen axioms are
insufficient to ascribe familiar properties to the real numbers.22

It is quite clear that this chapter will teach the students no new “facts” about
the real numbers, though they may come to understand how certain familiar
ideas fit together. I think it is important to let the students know that the goal
here is not to surprise them with the fact that a · 0 = 0 for all a ∈ R . This may
be a good time to revisit the question, why do we bother to prove things that we
already “know” to be true? (Students are sometimes too polite or intimidated
to ask this question, but it is certain that some of them are thinking it!)

One of the goals of the chapter is clearly to establish for the real numbers
a solid axiomatic foundation that will make their study subject to the rigorous
mathematical analysis the students have just spent a whole book learning; but
pedagogically it goes beyond that. The material in the chapter allows for a
general discussion of several interesting issues in abstract mathematics. The
book allows students to examine, in a familiar case, what sorts of considerations
go into the the construction of a set of axioms. It is an opportunity to talk about
differences between an abstract axiomatic system and a concrete object that it
is meant to describe.

An underlying principle is this: If two different structures both satisfy a given
list of axioms, we will be unable to prove (assuming no more than those axioms)
assertions about one of them that do not also hold true for the other. This idea
is a fairly subtle one for many students.23 Understanding this principle is also a

22When do we stop? The chapter begs the question of how we know when we are through
choosing axioms. The axioms we chose certainly established all the properties of R that we
listed in section 8.2, but one could easily keep making observations about the real numbers
until the cows come home. How do we know that by doing this we won’t find the need for
yet another axiom? The answer is that, without some further high-powered mathematics, we
don’t. To show that a set of axioms is sufficient to fully describe a given object, we must show
that any two structures that satisfy these axioms must be isomorphic (in some sense that is
not specified in the book). It requires a complete characterization such as the one given for
the rationals (as a totally ordered set) in Question to Ponder 4 on page 177.

23Some students may fall into the trap of thinking that if you can’t prove a given statement,
then it must follow that you can prove its negation. Watch for this and be prepared to make
the distinction between false and unprovable statments.
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very important step toward understanding some of the reasons for mathematical
abstraction. The study of a given axiomatic system can teach us some important
lessons. For one thing, it enables us to sort out properties that are shared by
otherwise very different mathematical structures. More to the point, limiting
our assumptions clearly exposes chains of mathematical dependence. The chain
of reasoning in chapter 8 shows that the field axioms and the order axioms
alone do not allow us to prove that all positive real numbers have a square root.
This is not merely due to a lack of sufficient cleverness. We have shown that it
cannot, in principle, be done.

Section 8.5—Sequence Convergence

The final section of chapter 8 is there to allow the students to use the struc-
tures that they have built up throughout the book. Pedagogically, it is also a
sort of “pre-analysis” section. The students are briefly exposed to some “ep-
silonics,” and the discussion surrounding the definition of a metric space sets
the stage for some of the standard abstractions that students will encounter in
an elementary analysis or topology course.

The Appendices

Much is made of THE AXIOMS OF SET THEORY both in Chapter
Zero and in other mathematics books. However, elementary treatments of the
building of the real numbers from set theory are rare. Books on axiomatic
set theory may do the job, but they also spend a lot of time on broader is-
sues that may obscure (for undergraduates) the main point: a handful of fairly
straightforward axioms about sets allow us to build all the familiar mathemat-
ical characters. Naturally, we use our intuitions about how those characters
ought to “look” and “behave” in the construction, but it can be fully carried
out without assuming anything beyond the few simple set axioms.

Students who attempt to delve into this section will find that the real num-
bers are genuine mathematical monsters. The tower of reasoning that is required
to build them is amazingly complex—it is a good thing that we simplify nota-
tion as we go along. (Have you ever tried to write down the real number “2”
explicitly as a set?!)

The two appendices are written in a style similar to the rest of the book.
That is, the students are led through the ideas, but the proofs are left for them
to fill in. However, the appendices are considerably sketchier than the earlier
parts of the book. This is particularly true in appendix B, where the proofs
of many of the properties of the various constructions can be quite involved.
Furthermore, the appendices often rely on the development in the main text.
(For example, once the Cartesian product of two sets is constructed using the
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axioms, the entire development of relations and functions in chapters 4 and 5
may be assumed.)

Nevertheless, the development in appendices A and B should be clear enough
to allow a bright student to understand the broad outlines, if not all of the
technical details.

Part III

Technical Details

Elaborations on the Dependency Chart

Skipping Partial Orderings

Section 4.2 looks at the first important special type of relation—the partially
ordered set. Some further parts of the book rely heavily on Section 4.2, most
especially the discussions of order isomorphism (5.4) number theory (chapter
6), comparing cardinalities (7.5 and 7.6), and the order and least upper bound
axioms for R (8.3 and 8.4). Though the sections on sequences nominally depend
on Section 4.2, it is easy to cover these without 4.2 by telling students to replace
any references to totally ordered sets by Runder the usual ordering.

If you don’t plan to cover order isomorphisms, number theory, or the ax-
ioms for the real number system, and you plan to do at most the “basics” of
cardinality, you can skip this section altogether.

Skipping Sequences

Sequences play a sizable role in the chapter the real number system. They play
a central role in the chapter on cardinality. However, if you do not plan to
include a study of cardinality, you can avoid sequences altogether. It would be
possible to cover some of the ideas of cardinality by handling the ideas about
sequences at the intuitive level. The chapter on number theory and the first four
sections of chapter 8 on the Real number system don’t depend on sequences.
(Sequences don’t show up in chapter 8 until section 8.5—after all the axioms
have been introduced.)
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Cardinality—a Small Caution

The dependency chart shows that Section 7.5 depends on the material in
section 4.3 (equivalence relations), but that section 7.1 does not. This is not
strictly true; 7.1 does depend very tenuously on equivalence relations. Exercise
7.1.3 asks the students to show that, for any set X, “has the same cardinality
as” is an equivalence relation on P(X)—though the various pieces of this are
separated out into separate propositions for the second edition. The final state-
ment of the theorem concludes that the relation “has the same cardinality as”
is an equivalence relation.

The ideas in section 7.5, however, depend in a fundamental way on an un-
derstanding of equivalence relations. Thus I decided to emphasize this more
important connection by drawing the arrow from 4.3 to 7.5 instead of 7.1.

The upshot of this is that if you wish to cover the basics of cardinality without
covering equivalence relations, you can easily do this by telling the students to
ignore the concluding statement of Theorem 7.1.3. You will not, however, be
able to progress into a general discussion of comparing cardinalities.

Errata

Here are the currently known errors in Chapter Zero, 2e. As I find more, I
will update the errata section in the version of the IRM that can be found on
the website. You might check the website periodically to get updates. If you
find errors that are not listed here, I would appreciate hearing about them.

• Pg. xii (Preface)—the last two words of the third line should be “second
edition” instead of “first edition.”

• Pg. 7—Beginning of the next to the last paragraph should read “Your
goal is to figure out . . . .” The word “to” was omitted.

• Pg. 18—The first line, second sentence after the table showing the truth
values for A =⇒ B reads “As you remember, each line of the truth table
gives all possible . . . ”

It should read “As you remember, the lines of the truth table give all
possible . . . ”

• Pg. 30—Example 1.10.1 . . . “Assume that x3 + 37 has a real root . . . ”
should read “Assume that x3 − 37 has a real root.” Alternatively, all the
minus signs in the proof should be plus signs.

• Pg. 31—Middle of the page... the line right after (So far, so good....) reads
“29 = 24 + 23 + 2 + 1.” It should, instead, read “27 = 24 + 23 + 2 + 1.”

Pg. 37—Problem 5(c)is incorrect as stated. Please substitute the following
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A truth table shows that (A =⇒ (B ∨ C)) is apparently equivalent to
((A =⇒ B) ∨ (A =⇒ C)). Find an example of a statement that shows
these are not, in fact, equivalent in general. Is the truth table lying?
What’s going on?

(Hint: think about the quantifiers that are ignored by the truth table.)

• Pg. 50—in the second bullet after 2.4.11. “established” is missing an “a.”

• Pg. 54—Problem 3, part (b). “disjoint” is missing an ”i.”

• Pg. 54—Problem 4, parts (b) and (c). The range of the indexing sets
should be the positive rational numbers.

• Pg. 54—Problem 6. The first line reads “ . . . you proved that set difference
distributes over . . . ” it should read “ . . . you proved that set difference does
not distribute over . . . .”

• Pg. 55, 8(c): This is not really a typo, but the notation sometimes confuses
students; it may be helpful to add parentheses so that

P(BC
U ) \ {∅} ⊆ P(B)CP(U)

becomes (P(BC
U ) \ {∅}) ⊆ (P(B))CP(U) .

• Pg. 58—In the middle of the page in the second line of the paragraph
following the “theorem,”—“For n = 41, . . . ” should read “For n = 40,
. . . .”

• Pg. 68—In the gray box: “In the case of the relations . . . ” should be ”In
the case of the relation . . . .”

• Pg. 70—Definition 4.2.5. The word “tricotomy” in the definition is written
“trichotomy,” instead.

• Pg. 71, third to the last line “Two partial orders are same if . . . ” should
be “Two partial orders are the same if . . . .”

• Pg. 87—4.4.4 # 6. E∗ should be a subset of E.

• Pg. 90—4.4.16. Needs to specify that n ≥ 2.

• Pg. 108—Theorem 5.1.16 is incorrect as written. It should read: “If
f : X → Y is a function, then there is an onto function f∗ : X →Ran(f)
such that . . . .”

• Pg. 111—Theorem 5.2.7. The last line reads “. . . is a function if and only
if . . . ” it should read “. . . is a function from B to A if and only if . . . .”
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• Pg. 114—Exercise 5.3.9. There is an extra comma in the offset text. It
should read

c ∈ f(Y ) provided that ...

• Pg. 132—Problem 13(b). The sentence reads:

. . . f(f−1(T )) . . .

Instead, it should read:
. . . f−1(f(T )) . . .

• Pg. 133 — Problem 16. The second sentence reads:

Define F : P(B) → P(B) . . .

It should, instead, read:

Define F : P(B) → P(A) . . .

• Pg. 135—Problem 27 (a) reads . . . “Prove that (N , +) and (R \ {0}, ·)
are groups.” It should, instead, read (Z,+) since (N ,+) is not, in fact, a
group. “Prove that (N ,+) is not a group and that (Z,+) and (R \ {0}, ·)
are groups.”

• Pg. 137—end of the first paragraph. “For instance, 7 and 9, 29 and 31
. . . ” should instead read “For instance, 5 and 7, 29 and 31 . . . .”

• Pg. 140—Theorem 6.2.6. The first line of the theorem should read “Let
a and b ∈ Z.” The integer c is not needed in the theorem.

• Pg. 169—Problem 7.4.10. The problem should read: “Let X be a set.
Let K ⊆ X. We define a function χK : X → {0, 1} . . . ” The rest of the
problem is stated correctly.

• Pg. 176—Problem 5 begins “Let K be any set and let F be the set of all
functions with domain K.” It should begin “Let K and Y be sets, and
let F be the set of all functions with domain K and codomain a subset of
Y .”

• Pg. 189—Hint for theorem 8.4.12. Between the second and the third sen-
tences add the words: “Assume (by invoking theorem 8.4.11, if necessary)
that x is a rational number. Then start with

√
2 . . . ”
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