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The Mathematical Education of Teachers II (MET II) (CBMS, 2012) chapter on high 

school teachers opens by noting that the double discontinuity experienced by prospective 

high school mathematics teachers and described by Felix Klein (1908) still exists today. 

As stated in MET II, this double discontinuity consists of the jolt experienced by the high 

school student moving from high school to university mathematics, followed by a second 

jolt moving from the mathematics major to teaching high school (p. 53). MET II 

addresses ways of smoothing the second jolt, but both jolts and extensions will be 

considered here, as they are the essence of the articulation issues between school and 

college mathematics. 
 
This article is being written as the Common Core State Standards in Mathematics 

(CCSSM, 2010) are being implemented in almost all states in the U.S. Consequently, 

there is little evidence beyond speculation as to how CCSSM will impact the transition 

from school to college mathematics. The impact of the new standards and the associated 

assessments will not be evident for several years, but inertia in the K-20 education system 

will likely prevent major changes.  
 
Readiness for College Mathematics 
As in most state standards that preceded CCSSM, and in college admissions testing by 

ACT and the College Board, readiness for college mathematics has been a much 

discussed and sought after goal. For example, ACT has a benchmark score of 22 on the 

mathematics test for readiness for college mathematics (approximately 560 on SAT 

mathematics reasoning). This definition of college readiness is narrow, focusing only on 

the likelihood of making a grade of C or better in the first degree-credit bearing college 

mathematics course, often college algebra. CCSSM aims at college and career readiness, 

built on the principle that all students will meet the standards laid out for high school 

mathematics as with the NCTM 2000 standards. The assessments associated with 

CCSSM are being developed by two consortia of states to be implemented in the 2014-

2015 school year. The CCSSM comprehensive assessment results, scheduled for the last 

part of grade 11, should therefore be available for consideration for the entering class of 

college students for 2016-2017. Some higher education institutions and systems in the 

states that signed on to CCSSM have agreed to use the CCSSM assessment results as a 

measure of readiness for college level mathematics, analogous to many institutions 

currently using the results of the ACT mathematics score or the SAT mathematics 

reasoning score. The agreements to use the CCSSM assessment scores in this way 

typically have been made at upper administrative college and university levels and not by 

mathematics departments. How mathematics faculties will accept and react to CCSSM 

assessments is largely unknown. In any event, validation of these assessment results as a 

reliable measure of readiness for college mathematics is likely half a dozen years or more 

away at this point.  
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However, the practice of placing entering college students in one of several possible 

entry-level mathematics courses is not likely to change with the implementation of 

CCSSM (as outlined above). Whether a student is prepared for calculus, for precalculus, 

for college algebra, or some other entry-level course likely will not be determined by 

CCSSM assessments. Therefore, placement programs will still be necessary. 
 
What do we know? We know that for the near future, placement programs will continue 

to be needed and will probably not change. 
 
What would we like to know? We would like to know how the implementation of 

CCSSM will affect the mathematical preparation of entering college students and what 

the CCSSM comprehensive assessments will tell us about these students. In addition, 

what changes might be needed in current placement tools to better align outcomes with 

the mathematics students will be expected to learn in high school.  
 
What resources are available?  College Board and ACT each offer placement testing 

systems, Accuplacer and COMPASS, respectively. The MAA placement tests are offered 

by Maplesoft and consist of the traditional tests in basic algebra, advanced algebra, 

elementary functions, trigonometry, and calculus readiness. The newest (2010) test is the 

Calculus Concept Readiness (CCR) instrument, and another new test, Algebra and 

Precalculus Concept Readiness (APCR), is being field tested in 2013 -2014. Other 

placement testing systems are available from publishing companies, and some, e.g. 

ALEKS, have tutorial systems included.  
 
Including Remediation

1
 in College Algebra 

One of the continuing articulation issues is that of requiring developmental courses in 

colleges and universities. For example, in Arkansas, state regulations require that students 

who have an ACT mathematics score less than 19 must complete a developmental 

mathematics course prior to enrolling in a degree-credit bearing mathematics course. This 

results in more than 40% of the entering college students being placed in developmental 

mathematics courses, namely courses that are prerequisites for college algebra. Since 

ACT sets as a benchmark an ACT mathematics score of 22, that creates a band of scores 

19-22 that ACT does not believe indicate college readiness, yet Arkansas policies say 

otherwise. In response to this, some institutions (e.g. University of Arkansas, 

Fayetteville) have created an alternate college algebra course with more class time and 

more support for students with ACT scores of 19-22. This has proved far more efficient 

and effective than placing these students in a developmental course and then expecting 

them to finish college algebra.  
 

                                                        
1 We are adhering to the distinctions between remedial and developmental as 
outlined, for example, by Ross (1970). Remedial instruction provides instruction in 
prerequisite material that is not a part of the course’s objectives. Developmental 
courses have specific learning objectives that are required of subsequent courses, 
e.g. college algebra.  
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Some placement examination systems (e.g. ALEKS) have instituted ways to provide 

learning tutorials to move the student from one placement level to a higher level. Often 

the purpose is analogous to the college algebra with support scheme above, namely to 

move the student from a developmental placement to one that is degree credit bearing. 
 
What do we know? We know that developmental mathematics courses in college are 

minimally successful in moving traditional age college freshmen from being unsuccessful 

in mathematics to being successful. 
 
What would we like to know? We would like to know better ways to improve learning of 

mathematics in high school. Better yet, we would like to know how to better motivate 

students to learn mathematics, especially algebra, the first time they study it.  
 
Calculus and Precalculus  
Attrition from the algebra-precalculus-calculus sequence is known to be significant and 

affects the number of students in the science, technology, engineering and mathematics 

(STEM) pipeline. As these courses overlay the intersection of high school and college 

mathematics, clarity and consistency in content and cognitive demands are needed for 

good articulation and realization of the potential for understanding in the next course and 

beyond. Although the content of precalculus courses may be the same, the cognitive 

demands of courses can be very different. Recently, the content and cognitive demands of 

algebra, precalculus, and calculus courses have been studied.  As Carlson, Oehrtman, and 

Engelke (2010) point out, “there is now substantial research on what is involved in 

learning key ideas of algebra through beginning calculus. However, a cursory 

examination of the commonly used curricula suggests that this research knowledge has 

had little influence on precalculus level curricula” (p. 114).  (See also, Tallman & 

Carlson, 2012.) 
 
Currently, an NSF-funded project of the Mathematical Association of America (MAA) is 

aimed at using the research results pointing to conceptual understanding needed to 

succeed in algebra, precalculus, and calculus to construct placement tests to measure this 

essential understanding. The first of these tests, the Calculus Concepts Readiness (CCR),  

is being used by some institutions to test for calculus readiness. Preliminary results 

indicate that many beginning calculus students do not have strong understandings of 

fundamental concepts, the major one being that of a function, especially viewed as a 

process. Of the twenty-five multiple choice precalculus items on CCR, students in 

calculus 1 at major universities on average get fewer than half of them correct. Moreover, 

the results are similar when CCR was administered to a sample of a couple hundred high 

school mathematics teachers, mostly teachers of algebra and precalculus. A second test, 

Algebra and Precalculus Concept Readiness (APCR), based on the same research, is 

nearing completion. 
 
The fact that many students in the calculus 1 courses in college are achieving passing 

grades without having strong understandings of seeming essential precalculus concepts 

suggests that the research results may be wrong. However, it more likely points to the 

lack of cognitive demands of the calculus courses themselves. This latter point is 
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supported by the results of Tallman and Carlson (2012) from examining a sample of 150 

final examinations from college and university calculus 1 courses. They determined that 

about 15% (slightly different for different kinds of institutions) of the examination items 

required understanding of concepts or applying understanding of concepts. That means 

that 85% of the items required recall of information or recall and application of a 

procedure. Interestingly, a similar examination of Advanced Placement (AP) calculus 

free-response items found that approximately 40% of the items required applying 

conceptual understanding. The fact that performance on the AP examination has a 

different scale for determining grades dilutes this comparison and does not necessarily 

indicate that the AP calculus students exhibit stronger conceptual understanding of 

calculus than the university calculus students.  
 
The above points strongly to weaknesses in the algebra-precalculus-calculus sequence 

caused by lack of cognitive demand. Surely, these weaknesses cause difficulties in 

subsequent STEM courses, indicating a lack of articulation between school and college or 

within colleges themselves. Another place that this lack of articulation surfaces is within 

the mathematics major. Many mathematics majors experience a jolt when they move 

from the more methodological calculus courses into the more abstract courses in algebra 

and advanced calculus. In fact, many (if not most) mathematics departments have 

instituted bridge courses (e.g. introduction to proof) to soften this jolt. Computer-based 

homework systems that provide testing using multiple choice items, often used in courses 

up through the calculus sequence, can aggravate this jolt, as the cognitive demand of such 

computer managed courses is often well below that of a junior-level course in abstract 

algebra or advanced calculus. 
 
What do we know? Strong evidence suggests that the algebra-precalculus-calculus 

sequence, whether in high school or college, is not meeting its potential for use in 

subsequent courses or in preparing students, particularly mathematics majors, for smooth 

transitions to more abstract and advanced study.  
 
What would we like to know? We would like to know how to influence schools and 

colleges to offer precalculus and calculus courses that are more cognitively demanding.  
 
Differing Systems and Pedagogies  
High school mathematics classrooms often differ from college and university classrooms. 

Most high school mathematics classes are in interactive classrooms with less than 30 

students. Many incorporate collaborative learning situations, frequently with inquiry-

based instruction. Contrast that with a lecture style university classroom with more than 

100 students, sometimes many more than 100. This system of large lecture-style classes, 

present in many large universities, is not only different from the system in most high 

schools, but it is also inconsistent with what research in learning theory tells us that is 

most effective for long-term retention and transfer, which provides another instance 

where research results are not significantly changing classroom practices. 
 
These differences will potentially increase with the use of online courses and degree 

programs in colleges and universities. The potential of delivering high-quality instruction 
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by expert teachers to all corners of the world is indeed attractive, but many questions 

remain about promoting interaction and keeping the cognitive levels of grading high. 

Some of these questions are raised in the following section on what is known about how 

people learn best.  
 
Ignoring How People Learn Best for Long-Term Retention and Transfer 
The expanded edition of How People Learn (Bransford, Cocking, & Brown, 2001) 

reported research results on learning and how these results can improve teaching and 

learning. Subsequent to the publication of How People Learn, Diane Halpern and Milton 

Hakel (2003) reported the results of a consensus agreement among 30 experts on the 

science of cognition in “Applying the Science of Learning to the University and 

Beyond.” They summarized the findings by giving ten basic laboratory-tested principles 

(listed in brief below) needed for enhancing long-term retention and transfer. In the 

opening paragraphs Halpern and Hakel (2003) write, ”We have found precious little 

evidence that content experts in the learning sciences actually apply the principles they 

teach in their own classrooms. Like virtually all college faculty, they teach the way they 

were taught. But, ironically (and embarrassingly), it would be difficult to design an 

educational model that is more at odds with the findings of current research about human 

cognition than the one being used today at most colleges and universities” (pp. 37-38). 

So, many of us in collegiate mathematics are unaware of or ignoring the research results 

on what concepts students need to understand to be successful in calculus, and we are 

seemingly joined in this by our high school colleagues. However, high school classroom 

practices are much more in tune with the ten Halpern and Hakel (2003) principles than 

are most college classrooms. 
1. The single most important variable in promoting long-term retention and 

transfer is “practice at retrieval.”  

2. Varying the conditions under which learning takes place makes learning 

harder for learners but results in better learning  

3. Learning is generally enhanced when learners are required to take information 

that is presented in one format and “re-represent” it in an alternate format.  

4. What and how much is learned in any situation depends heavily on prior 

knowledge and experience.  

5. Learning is influenced by both our students’ and our own epistemologies.  

6. Experience alone is a poor teacher. Too few examples can situate learning. 

Many learners don’t know the quality of their comprehension and need 

systematic and corrective feedback.  

7. Lectures work well for learning assessed with recognition tests, but work 

badly for understanding.  

8. The act of remembering itself influences what learners will and will not 

remember in the future. Asking learners to recall particular pieces of 

information (as on a test) that have been taught often leads to “selective 

forgetting” of related information that they were not asked to recall.  

9. Less is more, especially when we think about long-term retention and transfer. 

Restricted content is better.  

10. What learners do determines what and how much is learned, how well it will 

be remembered, and the conditions under which it will be recalled.  
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What do we know? We know what research on learning tells us about teaching for long-

term retention and transfer. We also know that most college mathematics faculty 

members do not apply the principles gleaned from this research in their classrooms.  
 
What do we need to know? We need to know how to teach – both in high school and 

college – to maximize long-term retention and transfer. There are research opportunities 

here.  
  
Statistics Articulation 
The situation in statistics articulation between high school and college is far less 

structured than that in mathematics. This is due in large part to the relative newness of 

statistics to the K-12 curriculum and its growing presence in undergraduate studies. 

However, with the growth of AP statistics over the past 15 years and the more definitive 

inclusion of probability and statistics in CCSSM, articulation possibilities are increasing. 

Currently, many college and university statistics courses cover content that is included in 

CCSSM, and developmental courses in statistics are rare. So are placement examinations 

in statistics. However, with a more determined effort via CCSSM to include and assess 

statistics in grades 6-12, entry-level college statistics courses have a chance to build on 

previous knowledge. In colleges and universities, statistics teaching is frequently 

dispersed across several departments – social sciences, agriculture, engineering, business, 

and mathematics. This most likely means that the effects of increased attention to 

statistics in K-12 because of CCSSM will be delayed a bit longer as these non-

mathematics disciplines are likely to be be slower to recognize the changes. 
 
Teachers from High School to College 
This is the jolt that is directly addressed by MET II. As noted by Klein (1908), this jolt 

stems mostly from the lack of any apparent connections between the mathematics the 

teachers studied as mathematics majors and the mathematics and statistics that they are 

expected to teach. There is no good reason for this lack of connections. Geometry, history 

of mathematics, abstract algebra, probability and statistics, and functions and relations 

form the foundations of school mathematics. Most importantly they give teachers the 

conceptual frameworks on which to hang their facts. Providing these conceptual 

frameworks, or versions thereof, to their students can bring coherence to learning, 

thereby promoting long-term retention and transfer. As concluded in How People Learn, 

“To develop competence in an area of inquiry, students must: (a) have a deep foundation 

of factual knowledge, (b) understand facts and ideas in the context of a conceptual 

framework, and (c) organize knowledge in ways that facilitate retrieval and application.”  
 
Prospective teachers would be better able to teach if their undergraduate mathematics 

courses modeled what is known about effective teaching for long-term retention and 

transfer. Some of the more prominent works in this area include the eight CCSSM 

standards for mathematical practice, the ten principles from Halpern and Hakel (2003) 
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given above, the five elements
2
 of effective thinking by Burger and Starbird (2012), the 

six core competencies for quantitative reasoning (Boersma, et al.,2011), and the 

conclusions reached in How People Learn. Although the eight CCSSM standards for 

mathematical practice were derived from the five strands of mathematical proficiency 

from Adding It Up (National Research Council, 2001) and the five NCTM (2000) process 

standards, these alternate expressions help in understanding the practices in slightly 

different ways. For example, the Adding It Up strand of productive disposition (habitual 

inclination to see mathematics as sensible, useful, and worthwhile, coupled with a belief 

in diligence in one’s own efficacy) is very important to keep in mind whether teaching 

college students or K-12 students.  
 
What do we know? We know that most college and university teachers teach the way they 

were taught and in ways that are different from the ways that high school teachers will be 

expected to teach.  
 
What would we like to know? We need more examples of ways to effectively connect the 

undergraduate mathematics major courses to school mathematics.  
 
What resources are available? MET II is available online and outlines the CBMS 

recommendations for the education of teachers. The references given here – How People 

Learn, Adding It Up, Five Elements of Effective Thinking (Burger and Starbird), Halpern 

and Hackel's Change paper, CCSSM’s eight standards for mathematical practice, and the 

six core competencies for quantitative reasoning (Boersma, et al.) are excellent readings 

for helping prospective teachers develop.  
Two books that connect undergraduate mathematics to school mathematics are 

Mathematics for High School Teacher: An Advanced Perspective by Usiskin, Peressini, 

Marchisotto and Stanley and An Introduction to Abstract Algebra with Notes to the 

Future Teacher by Nicodemi, Sutherland, and Towsley.  
  
Quantitative Reasoning Courses 
Quantitative reasoning (QR) or quantitative literacy (QL) courses are increasing as the 

newest entry in the mathematics courses for general education. Since these courses rely 

most heavily on proportional reasoning and number sense that is developed mostly in 

middle school mathematics and not emphasized in high school, there can be an 

articulation issue when college students encounter these. One of the weaknesses of 

CCSSM is its attention to the third readiness “C,” citizenship readiness, to go along with 

college and career. High school courses have not emphasized general education issues, 

being hard pressed to cover all the content in geometry, algebra, statistics, and functions. 

However, teachers are beginning to use applications to the everyday worlds of their 

students as motivation for the students to learn mathematics. This has become more 

possible because of the increased number of quantitative issues in contemporary society 

and is especially effective in teaching statistics and data analyses. 

                                                        
2 See appendix for the lists of the elements of effective thinking, the strands of 
mathematical proficiency, the core competencies for quantitative reasoning, the 
eight CCSSM practice standards, and the conclusions from How People Learn.  

http://www.cbmsweb.org/MET_Document/index.htm
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What do we know? We know that courses in QR and QL are increasingly offered at many 

colleges and universities, sometimes by units other than mathematics departments.  
 
What would we like to know? We would like to know how to evaluate QR and QL 

courses that are unusual in mathematics departments because they are not defined by 

their content as are most mathematics courses.  
 
What resources are available? The National Numeracy Network (NNN) (an 

interdisciplinary organization) and the QL SIGMAA of MAA can provide information 

about QR and QL courses. NNN publishes a free access online journal, Numeracy, twice 

annually containing papers on QR and QL education.  
 
College Credit for Courses Taken while in High School  
There are two types of courses taken by high school students that may earn them college 

credit. The first are courses that are validated by examinations: Advanced Placement 

(AP) courses by the College Board and International Baccalaureate (IB) courses. Students 

entering a college or university and wanting credit for either AP or IB courses should 

have their grades in those courses reported to the college or university. Individual 

colleges or universities have to determine what credit in what courses to award for what 

AP or IB grades. The courses of interest to mathematical science departments are AP 

Calculus AB, AP Calculus BC, AP Statistics, and IB Mathematics.  
 
The second type of courses is dual enrollment courses (also called concurrent enrollment 

courses). Credit for these courses is arranged by way of agreements between a high 

school and a college or university. Sometimes these courses are taught on a college 

campus with a mix of school and college students, and sometimes they are taught in a 

high school. The teacher may be either a college teacher or a high school teacher, and 

there may or may not be an examination fashioned by the college. The mathematics 

courses range from college algebra through the calculus sequence.  
 
Both AP course enrollments and dual enrollment course enrollments have been 

increasing, and are likely to continue for the near future. 
 
What do we know? There is considerable information about students who take AP 

Calculus, less about students who take AP Statistics, and IB programs are relatively few 

compared to AP. David Bressoud has written extensively about the interaction of calculus 

in high school and calculus in college.  
 
What would we like to know? The literature on the effectiveness of dual enrollment 

courses paints a mixed picture of their effectiveness. There is a professional organization 

that promotes concurrent enrollment courses. The central question is this: Do dual 

enrollment courses increase learning in postsecondary education? If so, how? The same 

question can be asked about AP or IB courses. Studying college material in high school 

can hasten finishing college, but do they increase learning?  
 

http://www.maa.org/columns/launchings/launchings.html
http://nacep.org/
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10 

The six core competencies for quantitative reasoning (Boersma, et al., 2011) 

1. Interpretation: Ability to glean and explain mathematical information presented 

in various forms (e.g. equations, graphs, diagrams, tables, words). 

2. Representation: Ability to convert information from one mathematical form (e.g. 

equations, graphs, diagrams, tables, words) into another. 

3. Calculation: Ability to perform arithmetical and mathematical calculations. 

4. Analysis/Synthesis: Ability to make and draw conclusions based on quantitative 

analysis. 

5. Assumptions: Ability to make and evaluate important assumptions in estimation, 

modeling, and data analysis. 

6. Communication: Ability to explain thoughts and processes in terms of what 

evidence is used, how it is organized, presented, and contextualized. 

 
The five strands of mathematical proficiency from Adding It Up (National Research 

Council, 2001) 

 

1. Conceptual understanding: Comprehension of mathematical concepts, operations 

and relations. 

2. Procedural fluency: Skill in carrying out procedures flexibly, accurately, 

efficiently, and appropriately. 

3. Strategic competence: Ability to formulate, represent, and solve mathematical 

problems. 

4. Adaptive reasoning: Capacity for logical thought, reflection, explanation, and 

justification. 

5. Productive disposition: Habitual inclination to see mathematics as sensible, 

useful, and worthwhile, coupled with a belief in diligence in one’s own efficacy. 

 

The mathematical practice standards from CCSSM (2010).  

 

1. Make sense of problems and persevere in solving them: Mathematically proficient 

students start by explaining to themselves the meaning of a problem and looking 

for entry points to its solution.  

 
2. Reason abstractly and quantitatively: Mathematically proficient students make 

sense of quantities and their relationships in problem situations. 

 
3. Construct viable arguments and critique the reasoning of others: Mathematically 

proficient students understand and use stated assumptions, definitions, and 

previously established results in constructing arguments. 

 
4. Model with mathematics: Mathematically proficient students can apply the 

mathematics they know to solve problems arising in everyday life, society, and 

the workplace.  
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5. Use appropriate tools strategically: Mathematically proficient students consider 

the available tools when solving a mathematical problem.  

 
6. Attend to precision: Mathematically proficient students try to communicate 

precisely to others.  

 
7. Look for and make use of structure: Mathematically proficient students look 

closely to discern a pattern or structure.  

 
8. Look for and express regularity in repeated reasoning: Mathematically proficient 

students notice if calculations are repeated, and look both for general methods and 

for shortcuts.  

 

Four of the five elements of effective thinking (Burger and Starbird, 2012).  

 

● Earth – Understand deeply. Don’t face complex issues head-on; first understand 

simple ideas deeply. Clear the clutter and expose what is really important. 
● Fire – Ignite insights by making mistakes. Fail to succeed. Intentionally get it 

wrong to inevitably get it more right. Mistakes are great teachers – they highlight 

unforeseen opportunities and holes in your thinking. 
● Air – Raise questions. Constantly create questions to clarify and extend your 

understanding. What’s the real question? Working on the wrong question can 

waste a lifetime. Be your own Socrates.  
● Water – Follow the flow of ideas. Look back to see where ideas came from and 

then look ahead to see where the ideas may lead. A new idea is a beginning, not 

an end.  
 

Conclusions from How People Learn (Bransford, Brown & Cocking, 2001).  

 

1.  Students come to the classroom with preconceptions about how the world works. If 

their initial understanding is not engaged, they may fail to grasp the new concepts and 

information that they are taught, or they may learn them for purposes of a test but revert 

to their preconceptions outside the classroom. 
Therefore:  Teachers must draw out and work with preexisting understandings that their 

students bring to them.  
 
2. To develop competence in an area of inquiry, students must: (a) have a deep 

foundation of factual knowledge, (b) understand facts and ideas in the context of a 

conceptual framework, and (c) organize knowledge in ways that facilitate retrieval and 

application. 
 
Therefore:   Teachers must teach some subject matter in depth, providing many examples 

in which the same concept is at work and providing a firm foundation of factual 

knowledge. Burger and Starbird (2012) get at this in several ways. While giving advice 

on how to understand deeply, they say, “Sweat the small stuff.” (p. 25). They note that 

Comment [1]: Something's funny about the 
original numbering in this list.  E.g., what does 
1T mean?   (I think 1T means something like 
"conclusion from 1").   I restructured the list a 
bit. 
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when studying some complex issue, instead of attacking it in its entirety, find one small 

element of it and solve that part completely.  
 
3.  A “metacognitive” approach to instruction can help students learn to take control of 

their own learning by defining learning goals and monitoring their progress in achieving 

them. Burger and Starbird’s five elements are aimed at students (and others) taking 

control of their own learning. Although there are anecdotes from their classrooms that 

illustrate the five elements in action, the real message is to the learner-thinker. 
 


