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Probabilistic number theory?

Pick n ∈ N with n ≤ 10, 000, 000 at random.

I How likely is it to be prime?

I How many prime divisors will it have?
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The prime divisor counting function ω

Definition
The function ω : N→ N defined by

ω(n) :=
∑
{p:p|n}

1

is called the prime divisor counting function; ω(n) yields the
number of distinct prime divisors of n.

n prime factorization ω(n)

6
30

1872
2012
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The prime divisor counting function ω

Definition
The function ω : N→ N defined by

ω(n) :=
∑
{p:p|n}

1

is called the prime divisor counting function; ω(n) yields the
number of distinct prime divisors of n.

n prime factorization ω(n)

6 2 · 3 2
30 2 · 3 · 5 3

1872 24 · 32 · 13 3
2012 22 · 503 2
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An Illustration
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The Erdős-Kac Theorem

Theorem
Let N ∈ N. Then as N →∞,

νN

{
n ≤ N :

ω(n)− log logN√
log logN

≤ x

}
= Φ(x).

That is, the limit distribution of the prime-divisor counting
function ω(n) is the normal distribution with mean log logN and
variance log logN.
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The Erdős-Kac Theorem

Heuristically:

1. Most numbers near a fixed N ∈ N have log logN prime factors
(Hardy and Ramanujan, Turán).

2. Most prime factors of most numbers near N are small.

3. The events “p divides n, with p a small prime, are roughly
independent (Brun sieve).

4. If the events were exactly independent, a normal distribution
would result.
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Erdős-Kac vs. Central Limit Theorem

Theorem
Let X1,X2, . . . be a sequence of independent and identically
distributed random variables, each having mean µ and variance σ2.
Then the distribution of

X1 + · · ·+ Xn − nµ

σ
√
n

tends to the standard normal as n→∞.
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Uniform probability law

By νN we denote the probability law of the uniform distribution
with weight 1

N on {1, 2, . . . ,N}. That is, for A ⊂ N,

νNA =
∑
n∈A

λn with λN =

{
1
N n ≤ N

0 n > N.
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Weak convergence

We say that a sequence {Fn} of distribution functions converges
weakly to a function F if

lim
n→∞

Fn(x) = F (x)

for all points where F is continuous.
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Limiting distributions

Let f be an arithmetic function. Let N ∈ N. Define

FN(z) := νN{n : f (n) ≤ z} =
1

N
#{n ≤ N : f (n) ≤ z}.

We say that f possess a limiting distribution function F if the
sequence FN converges weakly to a limit F that is a distribution
function.
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Characteristic functions

Definition
Let F be a distribution function. Then its characteristic function is
given by

ϕF (τ) :=

∫ ∞
−∞

exp(iτz)dF (z).

The characteristic function is uniformly continuous on the real line.

Fact: A distribution function is completely characterized by its
characteristic function.

Lemma
The characteristic function of the standard normal distribution Φ is
given by

ϕΦ(τ) = exp

(
−τ

2

2

)
.
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Levy’s continuity theorem

Theorem
Let {Fn} be a sequence of distribution functions and {ϕFn} be the
corresponding sequence of their characteristic functions. Then
{Fn} converges weakly to a distribution function F if and only if
ϕFn converges pointwise on R to a function ϕ that is continuous at
0. Additionally, in this case, ϕ is the characteristic function of F .
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The Erdős-Kac Theorem

Theorem
Let N ∈ N. Then as N →∞,

νN

{
n ≤ N :

ω(n)− log logN√
log logN

≤ x

}
= Φ(x).

That is, the limit distribution of the prime-divisor counting
function ω(n) is the normal distribution with mean log logN and
variance log logN.
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A proof sketch

The atomic distribution function for N ∈ N is

FN(x) = νN

{
n ≤ N :

ω(n)− log logN√
log logN

≤ x

}
=

1

N
#

{
n ≤ N :

ω(n)− log logN√
log logN

≤ x

}
.

We denote by ϕFN
(τ) the characteristic function of FN . We have

ϕFN
(τ) =

∫ ∞
−∞

e iτzdFN(z)

Let P = {· · · < x−1 < x0 < x1 < · · · < xi · · · } be a partition of R.
Then we have ϕFN

(τ) equal to
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A proof sketch continued

=

∫ ∞
−∞

e iτzdFN(z)

= lim
mesh(P)→0

∑
k

e iτz (FN(xk)− FN(xk−1))

= lim
mesh(P)→0

∑
k

e iτz
(

1

N
# {n ≤ N : f (n) ≤ xk} −

1

N
# {n ≤ N : f (n) ≤ xk−1}

)

=
1

N

[
lim

mesh(P)→0

∑
k

e iτz
(

# {n ≤ N : f (n) ≤ xk} − # {n ≤ N : f (n) ≤ xk−1}
)]

=
1

N

max{ω(n):n≤N}∑
k=0

e iτ f (n)

=
1

N

∑
n≤N

e iτ f (n)
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A proof sketch continued

Next, we find some bounds for ϕFN
(τ):

ϕFN
(τ) = exp

(
−τ

2

2

)(
1 + O

( |τ |+ |τ |3√
log logN

))
+ O

(
1

logN

)
.

(Informally, we write f (x) = O(g(x)) when there exists a positive
function g such that f does not grow faster than g .)

Take the limit as N →∞:

ϕFN
(τ)→ exp

(
−τ

2

2

)
= ϕΦ(τ).
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A proof sketch continued

In other words, the sequence of characteristic functions ϕFN

converges pointwise to the characteristic function of the normal
distribution.

Apply Levy’s continuity theorem:

νN

{
n ≤ N :

ω(n)− log logN√
log logN

≤ x

}
= Φ(x).

Thus, the limit distribution of the prime-divisor counting function
ω(n) is the normal distribution with mean log logN and variance
log logN. This completes the proof.
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An Illustration
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