Probability and Number Theory: an Overview of the Erdős-Kac Theorem

Alex Beckwith

December 12, 2012

э

< 17 ▶

Alex Beckwith

Probabilistic number theory?

Pick $n \in \mathbb{N}$ with $n \leq 10,000,000$ at random.

- How likely is it to be prime?
- How many prime divisors will it have?

< (1) > < (1) > <

э

Definition The function $\omega:\mathbb{N}\to\mathbb{N}$ defined by

$$\omega(n) := \sum_{\{p:p|n\}} 1$$

A (1) > A (1) > A

э

is called the **prime divisor counting function**; $\omega(n)$ yields the number of distinct prime divisors of *n*.

Alex Beckwith

Definition The function $\omega:\mathbb{N}\to\mathbb{N}$ defined by

$$\omega(n) := \sum_{\{p:p|n\}} 1$$

is called the **prime divisor counting function**; $\omega(n)$ yields the number of distinct prime divisors of *n*.

n	prime factorization	$\omega(n)$	
6			
30			
1872			
2012			
	I	1	

A (1) > A (1) > A

э

Alex Beckwith

Definition The function $\omega:\mathbb{N}\to\mathbb{N}$ defined by

$$\omega(n) := \sum_{\{p:p|n\}} 1$$

is called the **prime divisor counting function**; $\omega(n)$ yields the number of distinct prime divisors of *n*.

n	prime factorization	$\omega(n)$	
6	2 · 3		
30			
1872			
2012			
	1		

A (1) > A (1) > A

э

Alex Beckwith

Definition The function $\omega:\mathbb{N}\to\mathbb{N}$ defined by

$$\omega(n) := \sum_{\{p:p|n\}} 1$$

is called the **prime divisor counting function**; $\omega(n)$ yields the number of distinct prime divisors of *n*.

1	1	prime factorization	$\omega(n)$		
6	5	2 · 3	2	-	
3	0				
18	72				
20	12				
		I			

A (1) > A (1) > A

э

Alex Beckwith

Definition The function $\omega:\mathbb{N}\to\mathbb{N}$ defined by

$$\omega(n) := \sum_{\{p:p|n\}} 1$$

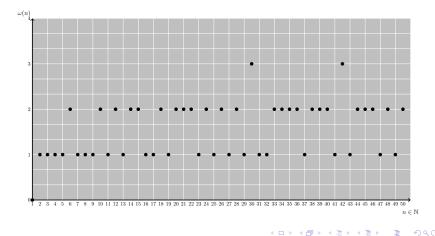
is called the **prime divisor counting function**; $\omega(n)$ yields the number of distinct prime divisors of *n*.

n	prime factorization	$\omega(n)$
6	2 · 3	2
30	$2 \cdot 3 \cdot 5$	3
1872	$2^4 \cdot 3^2 \cdot 13$	3
2012	$2^2 \cdot 503$	2

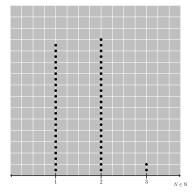
(日) (同) (三) (三)

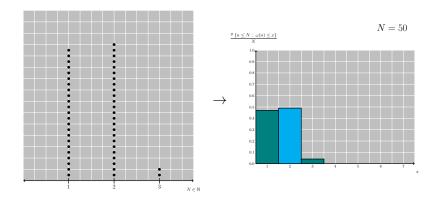
э

Alex Beckwith



Alex Beckwith





・ロン ・回 と ・ ヨ と ・ ヨ と …

÷.

Alex Beckwith

Theorem *Let* $N \in \mathbb{N}$ *. Then as* $N \to \infty$ *,*

$$u_N\left\{n\leq N: rac{\omega(n)-\log\log N}{\sqrt{\log\log N}}\leq x
ight\}=\Phi(x).$$

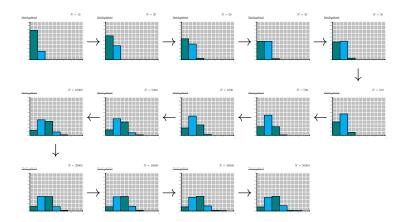
That is, the limit distribution of the prime-divisor counting function $\omega(n)$ is the normal distribution with mean log log N and variance log log N.

▲ □ ▶ ▲ 三 ▶ ▲

э

◆□ > ◆□ > ◆臣 > ◆臣 > □ = −の < ⊙

Alex Beckwith



2

Alex Beckwith

Heuristically:

Alex Beckwith

1. Most numbers near a fixed $N \in \mathbb{N}$ have $\log \log N$ prime factors (Hardy and Ramanujan, Turán).

A (1) > A (1) > A

2

Heuristically:

Alex Beckwith

1. Most numbers near a fixed $N \in \mathbb{N}$ have log log N prime factors (Hardy and Ramanujan, Turán).

▲ □ ▶ ▲ 三 ▶ ▲

э

2. Most prime factors of most numbers near N are small.

Heuristically:

Alex Beckwith

1. Most numbers near a fixed $N \in \mathbb{N}$ have log log N prime factors (Hardy and Ramanujan, Turán).

▲ □ ▶ ▲ 三 ▶ ▲

э

- 2. Most prime factors of most numbers near N are small.
- 3. The events "*p* divides *n*, with *p* a small prime, are roughly independent (Brun sieve).

Heuristically:

- 1. Most numbers near a fixed $N \in \mathbb{N}$ have log log N prime factors (Hardy and Ramanujan, Turán).
- 2. Most prime factors of most numbers near N are small.
- 3. The events "*p* divides *n*, with *p* a small prime, are roughly independent (Brun sieve).
- 4. If the events were exactly independent, a normal distribution would result.

A (1) > A (1) > A

э

Erdős-Kac vs. Central Limit Theorem

Theorem

Let X_1, X_2, \ldots be a sequence of independent and identically distributed random variables, each having mean μ and variance σ^2 . Then the distribution of

$$\frac{X_1 + \dots + X_n - n\mu}{\sigma\sqrt{n}}$$

.∃⇒ . ∢

э

tends to the standard normal as $n \to \infty$.

Alex Beckwith

Uniform probability law

By ν_N we denote the probability law of the uniform distribution with weight $\frac{1}{N}$ on $\{1, 2, ..., N\}$. That is, for $A \subset \mathbb{N}$,

$$\nu_N A = \sum_{n \in A} \lambda_n \quad \text{with} \quad \lambda_N = \begin{cases} \frac{1}{N} & n \leq N \\ 0 & n > N. \end{cases}$$

(日) (同) (三) (三)

3

Alex Beckwith

Weak convergence

We say that a sequence $\{F_n\}$ of distribution functions **converges** weakly to a function F if

$$\lim_{n\to\infty}F_n(x)=F(x)$$

▲ □ ▶ ▲ 三 ▶ ▲

3

for all points where F is continuous.

Alex Beckwith

Limiting distributions

Let f be an arithmetic function. Let $N \in \mathbb{N}$. Define

$$F_N(z) := \nu_N\{n : f(n) \le z\} = \frac{1}{N}^{\#}\{n \le N : f(n) \le z\}.$$

We say that f possess a **limiting distribution function** F if the sequence F_N converges weakly to a limit F that is a distribution function.

A (1) > A (1) > A

э

Probability and Number Theory: an Overview of the Erdős-Kac Theorem

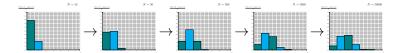
Alex Beckwith

Limiting distributions

Let f be an arithmetic function. Let $N \in \mathbb{N}$. Define

$$F_N(z) := \nu_N\{n : f(n) \le z\} = \frac{1}{N}^{\#}\{n \le N : f(n) \le z\}.$$

We say that f possess a **limiting distribution function** F if the sequence F_N converges weakly to a limit F that is a distribution function.



< 17 ▶

э

Alex Beckwith

Characteristic functions

Definition

Alex Beckwith

Let F be a distribution function. Then its characteristic function is given by

$$\varphi_F(\tau) := \int_{-\infty}^{\infty} \exp(i\tau z) dF(z).$$

The characteristic function is uniformly continuous on the real line.

3

Characteristic functions

Definition

Alex Beckwith

Let F be a distribution function. Then its characteristic function is given by

$$\varphi_F(\tau) := \int_{-\infty}^{\infty} \exp(i\tau z) dF(z).$$

The characteristic function is uniformly continuous on the real line. Fact: A distribution function is completely characterized by its characteristic function.

< 回 > < 三 > < 三 >

э

Characteristic functions

Definition

Let F be a distribution function. Then its characteristic function is given by

$$\varphi_F(\tau) := \int_{-\infty}^{\infty} \exp(i\tau z) dF(z).$$

The characteristic function is uniformly continuous on the real line.

Fact: A distribution function is completely characterized by its characteristic function.

Lemma

The characteristic function of the standard normal distribution Φ is given by

$$\varphi_{\Phi}(\tau) = \exp\left(-\frac{\tau^2}{2}\right).$$

- 4 同 6 4 日 6 4 日 6

3

Alex Beckwith

Levy's continuity theorem

Theorem

Let $\{F_n\}$ be a sequence of distribution functions and $\{\varphi_{F_n}\}$ be the corresponding sequence of their characteristic functions. Then $\{F_n\}$ converges weakly to a distribution function F if and only if φ_{F_n} converges pointwise on \mathbb{R} to a function φ that is continuous at 0. Additionally, in this case, φ is the characteristic function of F.

- 4 同 6 4 日 6 4 日 6

э

Theorem *Let* $N \in \mathbb{N}$ *. Then as* $N \to \infty$ *,*

$$u_N\left\{n\leq N: rac{\omega(n)-\log\log N}{\sqrt{\log\log N}}\leq x
ight\}=\Phi(x).$$

That is, the limit distribution of the prime-divisor counting function $\omega(n)$ is the normal distribution with mean log log N and variance log log N.

▲ □ ▶ ▲ 三 ▶ ▲

э

A proof sketch

The atomic distribution function for $N \in \mathbb{N}$ is

$$F_N(x) = \nu_N \left\{ n \le N : \frac{\omega(n) - \log \log N}{\sqrt{\log \log N}} \le x \right\}$$
$$= \frac{1}{N} \# \left\{ n \le N : \frac{\omega(n) - \log \log N}{\sqrt{\log \log N}} \le x \right\}.$$

We denote by $\varphi_{F_N}(\tau)$ the characteristic function of F_N . We have

$$\varphi_{F_N}(\tau) = \int_{-\infty}^{\infty} e^{i\tau z} dF_N(z)$$

Let
$$P = \{ \dots < x_{-1} < x_0 < x_1 < \dots < x_i \dots \}$$
 be a partition of \mathbb{R} .
Then we have $\varphi_{F_N}(\tau)$ equal to

Alex Beckwith

$$= \int_{-\infty}^{\infty} e^{i\tau z} dF_N(z)$$

$$= \lim_{\text{mesh}(P) \to 0} \sum_k e^{i\tau z} \left(F_N(x_k) - F_N(x_{k-1}) \right)$$

$$= \lim_{\text{mesh}(P) \to 0} \sum_k e^{i\tau z} \left(\frac{1}{N} \# \{ n \le N : f(n) \le x_k \} - \frac{1}{N} \# \{ n \le N : f(n) \le x_{k-1} \} \right)$$

$$= \frac{1}{N} \left[\lim_{\text{mesh}(P) \to 0} \sum_k e^{i\tau z} \left(\# \{ n \le N : f(n) \le x_k \} - \# \{ n \le N : f(n) \le x_{k-1} \} \right) \right]$$

$$= \frac{1}{N} \sum_{k=0}^{N} e^{i\tau f(n)}$$

$$= \frac{1}{N} \sum_{n \le N} e^{i\tau f(n)}$$

Alex Beckwith

Next, we find some bounds for $\varphi_{F_N}(\tau)$:

$$\varphi_{F_N}(\tau) = \exp\left(-\frac{\tau^2}{2}\right) \left(1 + O\left(\frac{|\tau| + |\tau|^3}{\sqrt{\log\log N}}\right)\right) + O\left(\frac{1}{\log N}\right).$$

(Informally, we write f(x) = O(g(x)) when there exists a positive function g such that f does not grow faster than g.)

(日) (同) (三) (三)

3

Next, we find some bounds for $\varphi_{F_N}(\tau)$:

$$\varphi_{F_N}(\tau) = \exp\left(-\frac{\tau^2}{2}\right) \left(1 + O\left(\frac{|\tau| + |\tau|^3}{\sqrt{\log\log N}}\right)\right) + O\left(\frac{1}{\log N}\right).$$

(Informally, we write f(x) = O(g(x)) when there exists a positive function g such that f does not grow faster than g.) Take the limit as $N \to \infty$:

$$\varphi_{F_N}(\tau) \to \exp\left(-\frac{\tau^2}{2}\right) = \varphi_{\Phi}(\tau).$$

(日) (同) (三) (三)

3

Alex Beckwith

In other words, the sequence of characteristic functions φ_{F_N} converges pointwise to the characteristic function of the normal distribution.

.∃ ▶ . ∢

э

In other words, the sequence of characteristic functions φ_{F_N} converges pointwise to the characteristic function of the normal distribution.

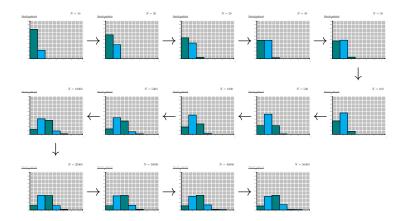
Apply Levy's continuity theorem:

$$u_N\left\{n\leq N: rac{\omega(n)-\log\log N}{\sqrt{\log\log N}}\leq x
ight\}=\Phi(x).$$

Thus, the limit distribution of the prime-divisor counting function $\omega(n)$ is the normal distribution with mean log log N and variance log log N. This completes the proof.

< 回 > < 三 > < 三 >

Probability and Number Theory: an Overview of the Erdős-Kac Theorem



2

Alex Beckwith

References

Alex Beckwith

Steuding, J. Probabilistic Number Theory 2002.

A (1) > (1) > (1)

문 문 문

Gowers, T. The Importance of Mathematics.

Alex Beckwith

Alex Beckwith