$$
175 \text { losisige foists. }
$$

Elements of Statistics (Math 106) - Exam 1
Name Spring 2009 - Brad Hartlaub

Directions: Please answer all of the questions below and show your work. The point values for each problem are indicated in parentheses. You may use one sheet of formulas, our course web page, and Minitab during the exam. Don't spend too much time on any one part of the exam.

1. Thirty percent of all automobiles undergoing an emissions inspection at a certain inspection station fail the inspection. $X=\#$ of automobiles that fail the inspection I $\sim B(n=15, P=3$)
a. Among 15 randomly selected cars, what is the probability that at most 5 fail the inspection? (5)

$$
P(\bar{X} \leqslant 5) \underset{\text { MTB. cumulative. }}{=} \text {. } 21621 \text { (ole. } 722 \text { Graph Prob Dist Plot) }
$$

b. Among 15 randomly selected cars, what is the probability that exactly 5 fail the inspection?

$$
\begin{equation*}
P(X=5)=\text { MTB prob } 206130 \tag{5}
\end{equation*}
$$

c. Among 15 randomly selected cars, what is the probability that at least 5 fail the inspection? (5)

$$
\begin{aligned}
& \qquad P(\mathbb{X} \geqslant 5)=1-P(\mathbb{I}<5)=1-P(X \leq 4)=1-.515491=.484509 \\
& \text { (d.) Among } 25 \text { randomly selected cars, what is the mean value of the number of cats that pass a ph }>\text { Prob lo Dist }) \\
& \text { inspection, and what is the standard deviation of the number that pass inspection? (10) }
\end{aligned}
$$

inspection, and what is the standard deviation of the number that pass inspection? (10)

$$
\begin{array}{ll}
\text { I~b(25,.7) } & \mu_{y}=1 p=25(.7)=17.5 \\
\rightarrow \text { H that pass } & \sigma_{y}=\sqrt{25(.7)(.3)}=2.2913
\end{array}
$$

e. What is the probability that among 25 randomly selected cars, the number than pass is within 1

$$
\begin{array}{ll}
\text { standard deviation of the mean? (10) } \\
17.5-2.2913=15.2087 & P(15.2087 \leq I \leq 19.7913) \\
17.5+2.2913=19.7913 & =P(16 \leq I \leq 19)=.617
\end{array}
$$

2. What type of graph or graphs would you plan to make in a study of each of the following issues? ($18-3$ each question)
a. What makes of cars do students drive? bar graph (or pie chart)
b. How old are their cars? histogram, dotplot, stem-and-leaf plot
c. How many hours per week do students study?
histogram, dotplot, stem-and-leat plot
d. How does the number of study hours change during the semester? time serves plot oR scatterplot
e. Which radio stations are the most popular with students? bar graph (or gre chart)
3. You are assigned to direct a study at Kenyon College to discover factors that are associated with strong academic performance. You decide to identify 20 students who have perfect GPAs of 4.0, and then measure explanatory variables for them that you think may be important, such as high school GPA and average amount of time spent studying per day.
a. Explain what is wrong with this study design. (10)

Restricting the range of 6 PAs (to perfect 4.0) will not allow us to explore the relationship with the explanatory
b. Describe a study design that would provide more useful information. (10) Several responses are possible for example, a simple radom sample of students could be selected or a stratified sample to tam equal numbers of students for each year could be obtaned. Get and the otherexplanemby variables should be examined
4. An interviewer stands at the street corner and conducts interviews until obtaining a quota in various groups representing the relative sizes of the groups in the population. For instance, the quota might be 50 factory workers, 100 housewives, 60 elderly people, 30 Hispanics, and so forth. This is called
quota sampling. Is this a random sampling method? Explain, and discuss the potential advantages and disadvantages of this method. (15)
No, this is not a random sampling method. The advantage

$$
\begin{aligned}
& \text { No, this is not a random sampling method. The advantage } \\
& \text { is that the "goota" is attempting to represent the population. } \\
& \text { However people who approach the street corner are interviewed as }
\end{aligned}
$$

However, people who approach the street corner are interviewed as they arrive and agree to be interviewed so may not be representative of the population.
5. Raw scores on behavioral tests are often transformed for easier comparison. A test of reading ability has mean 75 and standard deviation 10 when given to third graders. Sixth graders have mean score 82 and standard deviation 11 on the same test. To provide separate "norms" for each grade, we want scores in each grade to have mean 100 and standard deviation 20.
a. What linear transformation will change third-grade scores x into new scores $x_{\text {new }}=a+b x$ that have the desired mean and standard deviation? (Use $b>0$ to preserve the order of the scores.)

$$
\begin{array}{lll}
\bar{X}_{\text {new }}=a+b \bar{x} & 20=b 10 & a=\bar{x}_{\text {new }}-b \bar{x} \tag{10}\\
\text {s new }^{\text {new }}=b s & \Rightarrow b=2 & a=100-2(75)
\end{array} \quad \begin{aligned}
& a=1
\end{aligned}
$$

b. The linear transformation that will change sixth-grade scores x into new scores that have the desired mean and standard deviation is $x_{\text {new }}=-49.0924+1.8182 x$. Nancy is a sixth-grade student who scores 78 on the test. What is her transformed score? David is a third-grade student who scores 78 . Who scores higher within his or her grade? (10)

$$
6^{\text {th }} X_{\text {Nance y }}=-49.0924+1.8182(78)=92.7272
$$

$$
\text { ord } K_{\text {David }}=-50+2(78)=106 * \text { Pavid has the }
$$ highest score within his grade.

6. The usual way to study the brain's response to sounds is to have subjects listen to "pure tones." The response to recognizable sounds may differ. To compare responses, researchers anesthetized macaque monkeys. They fed pure tones and also monkey calls directly to their brains by inserting electrodes. Response to the stimulus was measured by firing rate (electrical spikes per second) of
 for 37 neurons.
a. One notable finding is that responses to monkey calls are generally stronger than responses to pure tones. Give a numerical measure that supports this finding. (5)

$$
\begin{array}{ccccc}
\text { Pure Tone } & \frac{\text { Mean }}{106.2} & \frac{\text { Median }}{12} & \frac{Q 1}{38} & \frac{Q 3}{155.5} \\
\text { Monkey Call } & 176.6 & 141 & 9 / & 205.5
\end{array}
$$

b. Find the least squares line for predicting monkey call response from pure tone response. (5)

$$
\text { Call }=93.92+.7183 \text { Tone }
$$

c. Identify and interpret the value of r^{2}.

$$
\begin{equation*}
\text { l-squared }=.408 \text { or } 40.8 \% \tag{10}
\end{equation*}
$$

$40,8 \%$ of the variability in molly Noatcey calls can he explained using linear regression and the explanatory variablepuie tones.

$$
\begin{aligned}
& \text { d. Identify the point with the largest residual. (5) } \\
& \text { hae } 3^{\text {rd point }(241,485) \text { has the largest residual (203. } 5045 \text {) }} \begin{array}{l}
2 \text { call. } \\
\text { 2 }
\end{array} \text {) }
\end{aligned}
$$

e. One point is an outlier in the x direction. Identify this point. How influential is this point on the correlation coefficient? (10)
 value of $t=.699$ with the pout t but r- drops to. 479 When

f. Would you be willing to use your least squares regression line from part (b) to predict the monkey call response when the pure tone response is 550? Explain. (5)
for a atrip ilion

$$
\begin{aligned}
& \text { the dato set so that mould yo well beyond the rate of } \\
& \text { waitlde doth. The rogession fro strait ut be cred }
\end{aligned}
$$

7. Different varieties of the tropical flower Heliconia are fertilized by different species of hummingbirds. Over time, the lengths of the flowers and the form of the hummingbirds' beaks have evolved to match each other. The data on the lengths in millimeters of three varieties of these flowers on the island of Dominca are in the file p:\data\math\stats\heliconia.mtw. Use visual displays and descriptive statistics to compare the three distributions. Your comparison should address center, spread, and shape of the three distributions. What are the most important differences among the three varieties of flowers? (30)

Boole

The different varieties have different lengths. Yellow is tho shortest red is next and bihar is the longest. (The mends, median's, or any other measures of location clearly show this fact.) 2. The varielitity las measured by IOR - Lt of box -or Std duration) is highest for the red variety, the yellow has the lowest/smallest variability and bihai is in between. 3. dilate
sym The other two distirbutions red andy ls
red and bithei) ares send to the silt.

