Some Series Practice

For each of the following, determine if the series converges or diverges. State which test you're using and show that all hypotheses are satisfied.

1.
$$\sum_{k=1}^{\infty} \frac{k^2 + 1}{k^2 \sqrt{k}}$$

2.
$$\sum_{k=1}^{\infty} \frac{k^2 + 1}{k^3 \sqrt{k}}$$

3.
$$\sum_{n=1}^{\infty} \frac{n(n+2)2^n}{3^n}$$

4.
$$\sum_{n=0}^{\infty} \frac{4n + 25}{5n + 10}$$

5.
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2 + 1}$$

6.
$$\sum_{j=1}^{\infty} \frac{1}{j^3} \text{ (no } p\text{-series knowledge allowed for this one).}$$

7.
$$\sum_{k=0}^{\infty} \frac{5k + 10}{25k^2 + 54k + 87}$$

8.
$$\sum_{n=0}^{\infty} \frac{n!}{1000^n}$$

9.
$$\sum_{k=2}^{\infty} \frac{e^{k+1}}{2^{2k}}$$

10.
$$\sum_{m=1}^{\infty} \frac{(-1)^n 4^n (n+2)}{(n+1)!2^n}$$

11.
$$\sum_{k=0}^{\infty} \frac{1}{2^k + 5}$$

12. For question 6, find an upper and lower bound on

- 13. For question 9, find the value of the sum.
- 14. For question 11, find an upper and lower bound on the sum.
- 15. For question 5, bound the magnitude of the error on the approximation S_5 .

the sum.