Euler's Method Exercises* Math 112

1. Suppose that y is a function of x whose derivative is given by $y' = \frac{y}{x^2}$ and that $y = -\frac{1}{2}$ when x = 1. Use Euler's method with $\Delta x = .1$ to approximate the value of y when x = 2.

Fill in the table below with the appropriate values and plot a graph of your results.

Old point		slope at old point	Change in y	new x	new y
old x	old y	y '(old point)	$\Delta y = \mathbf{slope} \cdot \Delta x$	old $x + \Delta x$	old $y + \Delta y$

Graph:

*This worksheet is adapted from a worksheet written by Carol Schumacher.

2. Suppose that y is a function of t whose derivative is given by $y' = 3y^2$ and that y = -1 when t = 0. Use Euler's method with $\Delta t = \frac{1}{2}$ to approximate the value of y when t = 3. Then take $\Delta t = -\frac{1}{2}$ and approximate the value of y when t = -2.

Old point		slope at old point	Change in y	new t	new y
old t	old y	y '(old point)	$\Delta y = \mathbf{slope} \cdot \Delta t$	old $t + \Delta t$	old $y + \Delta y$

Old point		slope at old point	Change in y	new t	new y
old <i>t</i>	old y	y '(old point)	$\Delta y = \mathbf{slope} \cdot \Delta t$	old $t + \Delta t$	old $y + \Delta y$

*This worksheet is adapted from a worksheet written by Carol Schumacher.