Introducing Loops*

▶ Documentation

Instructions: For each of the following small programs, pretend you are *Maple* and write down the output of the program and answer the question at the end.

Very Important: Notice that each loop, from "for k from 1 to n" to "end do", is enclosed in a single bracket. This is because Maple considers

these two lines to be the beginning and end of a single command (with the actual instructions for the loop in the middle). If Maple comes across "for k from 1 to n" by itself, it will not understand the command and will give you an error message. (If you ever need to type in a loop yourself, you can use SHIFT-ENTER to move from one line to the next without going to the next execution group.)

Loop Exercise 1

```
a[0] := 0

> for k from 1 to 7

do

a[k] := a[k-1] + 1

= end do
```

Question: What is a[7]?

Loop Exercise 2

>
$$x[0] := 1$$

> $for \ k \ from \ 1 \ to \ 4$
 do
 $x[k] := 2 \cdot x[k-1]$
 $end \ do$

Question: What is the program doing?

L*This worksheet was created by Carol Schumacher.

Loop Exercise 3

beltat := 1; n := 5; t[0] := 2; y[0] := 3
for k from 1 to n
do
t[k] := t[k-1] + deltat;
y[k] := y[k-1] + 2 · t[k]
end do;

Question: What is t[3]? What is y[5]?

Euler's Method Exercise

This is the place where the derivative is defined.

$$>$$
 slope := $(t, y) \rightarrow -t \cdot y$

This is where we enter the stepsize *deltat* and the initial values for *t* and *y*.

$$\rightarrow$$
 deltat := 0.25; $t[0] := 0$; $y[0] := 3$

And now, finally, here is the loop.

> for
$$k$$
 from 1 to 4
do
 $t[k] := t[k-1] + deltat;$
 $y[k] := y[k-1] + slope(t[k-1], y[k-1]) \cdot deltat$
end do

Question: How many points on the graph do you now have? What are they?