Product and Quotient Rules Practice Problems Calculus I, Math 111

Name:

1. Find the derivative of the given function.

(a)
$$g(x) = \sqrt{x}e^x$$

(b) $y = \frac{e^x}{1+x}$
(c) $f(t) = \frac{2t}{4+t^2}$
(d) $R(t) = (\frac{1}{t} + e^t) (4 - \sqrt[3]{t})$
(e) $y = \frac{t^3 + t}{t^4 - 2}$
(f) $y = \frac{1}{s + ke^s}$ where k is a constant.
(g) $z = w^{3/2}(w + ce^w)$ where c is a constant.
(h) $f(x) = \frac{1 - xe^x}{x + e^x}$
(i) $f(x) = \frac{ax + b}{cx + d}$ where a, b, c and d are constants.
(j) $y = e^u(\cos u + cu)$ where c is a constant.
(k) $y = \frac{x}{\cos x}$
(l) $y = \frac{1 + \sin x}{x + \cos x}$
(m) $y = \frac{1 - \sec x}{\tan x}$
(n) $y = \csc \theta(\theta + \tan \theta)$

2. Find the line tangent to the given curve at the specified point.

(a)
$$y = \frac{\sqrt{x}}{x+1}$$
, (4,0.4)
(b) $y = \frac{1}{1+x^2}$, (-1, $\frac{1}{2}$)

3. Finally, some differential equations problems:

- (a) Show that $y = -\frac{1}{2}x \cos x$ is a solution to $y'' + y = \sin x$.
- (b) Show that $y = \frac{(\ln x) + C}{x}$ is a solution to the differential equation $x^2y' + xy = 1$.
- (c) Use your answer to the previous question to find a solution to the IVP $x^2y' + xy = 1$, y(1) = 2.

This problem set is adapted from a worksheet created by Bob Milnikel.