Chain Rule Practice Problems Calculus I, Math 111

Name:

1. Find the derivative of the given function.

(a) $F(x) = \sqrt[4]{1+2x+x^3}$ (b) $g(t) = \frac{1}{(t^4 + 1)^3}$ (c) $y = \cos(a^3 + x^3)$ where a is a constant. (d) $y = xe^{-x^2}$ (e) $g(x) = (1+4x)^5(3+x-x^2)^8$ (f) $y = e^{x \cos x}$ (g) $F(z) = \sqrt{\frac{z-1}{z+1}}$ (h) $y = (\sec x)^2 + (\tan x)^2$ (i) $y = \frac{r}{\sqrt{r^2+1}}$ (i) $y = \cos z$ (j) $y = 2^{\sin \pi x}$ (k) $(\cot(\sin\theta))^2$ (1) $y = \sin(\tan(\sqrt{\sin x}))$ (m) $y = \arctan(\sqrt{x})$ (n) $y = \arcsin(2x+1)$ (o) $y = \arcsin(\tan \theta)$ (p) $f(\theta) = \ln(\cos \theta)$ (q) $f(x) = \sqrt[5]{\ln x}$ (r) $f(x) = \ln(1 - 3x)$ (s) $f(x) = (\sin x) \cdot (\ln(5x))$ (t) $F(t) = \ln \frac{(2t+1)^3}{(3t-1)^4}$ (u) $f(u) = \frac{\ln u}{1 + \ln(2u)}$ (v) $y = \ln(e^{-x} + xe^{-x})$

(Hint on part (d): Use algebraic rules for logarithms to simplify first!)

2. Find the line tangent to the given curve at the specified point.

(a)
$$y = (1+2x)^{10}$$
 at $(0,1)$

(b) $y = \ln(x^2 - 3)$ at (2, 0)

3. Finally, a differential equations problem:

Show that for any constant c, $y = (c - x^2)^{-1/2}$ is a solution to the differential equation $y' = xy^3$. Then find a solution to the initial value problem $y' = xy^3$, y(0) = 2.

This problem set is adapted from a worksheet created by Bob Milnikel.