Math 224 Vector Spaces

Definition. A vector space a set V of objects called vectors, together with :

- A rule for adding any two vectors **v** and **w** to produce a vector **v** + **w** in V. Note that this means that V must be **closed under vector addition**.
- A rule for multiplying any vector \mathbf{v} in V by any scalar r in \mathbb{R} to produce a vector $r\mathbf{v}$ in V. Note that this means that V must be closed under scalar multiplication.
- There must exist a vector **0** in V. Note: this may not always be the vector that you expect to call the zero vector. For each vector **v** in V, there must exist a vector $-\mathbf{v}$ in V (see below).
- Properties A1 through A4 and S1 through S4 below must be satisfied for all choices of vectors $\mathbf{u}, \mathbf{v}, \mathbf{w}$ in V and all scalars r, s in \mathbb{R} .
 - A1 $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$. This means that vector addition must be associative.
 - A2 $\mathbf{v} + \mathbf{w} = \mathbf{w} + \mathbf{v}$. This means that vector addition must be commutative.
 - A3 $\mathbf{0} + \mathbf{v} = \mathbf{v}$. This means that $\mathbf{0}$ must the the additive identity of the vector space.
 - A4 $\mathbf{v} + -\mathbf{v} = \mathbf{0}$. This means that $-\mathbf{v}$ is the additive inverse of \mathbf{v} .
 - S1 $r(\mathbf{v} + \mathbf{w}) = r\mathbf{v} + r\mathbf{w}$). This is a distributive rule for scalar multiplication.
 - S2 $(r+s)\mathbf{v} = r\mathbf{v} + s\mathbf{v}$. This is another distributive rule for scalar multiplication.
 - S3 $r(s\mathbf{v}) = (rs)\mathbf{v}$. This means that scalar multiplication is associative.
 - S4 $1\mathbf{v} = \mathbf{v}$. This means that scalar multiplication preserves scale.

Examples of vector spaces.

- 1. \mathbb{R}^n , with usual vector addition and scalar multiplication, is a vector space for every integer $n \ge 1$.
- 2. Let F be the set of all real-valued functions with domain \mathbb{R} . The vector sum of two functions f and g in F is defined in the usual way by (f+g)(x) = f(x)+g(x). For any scalar r in \mathbb{R} , scalar multiplication is defined by (rf)(x) = rf(x) is a vector space. Show that F with these operations is a vector space.
- 3. Show that the set P of all polynomials in the variable x with coefficients in \mathbb{R} , with vector addition and scalar multiplication the usual addition of polynomials and multiplication of a polynomial by a scalar, is a vector space.

- 4. Show that the set $M_{m,n}$ of all $m \times n$ matrices with real entries, with the usual addition of matrices and multiplication of a matrix by a scalar, is a vector space.
- 5. Show that the set P_n of all polynomials in x with coefficients in \mathbb{R} of degree less than or equal to n, together with the zero polynomial, with usual addition and scalar multiplication, is a vector space.
- 6. Consider the set \mathbb{R}^2 , with the usual addition, but with scalar multiplication defined by r[x, y] = [ry, rx]. Show that this set is a vector space.
- 7. Consider the set \mathbb{R}^2 , with addition defined by $[x, y] \ddagger [a, b] = [x + a + 1, y + b]$, and with scalar multiplication defined by r[x, y] = [rx + r - 1, ry]. Is this set a vector space? Show, by verifying A1-A4 and S1-S4, that this set is a vector space. Note: The zero vector will NOT be the vector [0, 0]. What is the zero vector in this vector space.
- 8. Determine whether the given set is closed under the usual operations of addition and scalar multiplication, and is a vector space.
 - (a) The set of all upper-triangular $n \times n$ matrices (i.e. the set of all $n \times n$ matrices with zeros below the main diagonal).
 - (b) The set of all 2×2 matrices of the form

$$\left[\begin{array}{r} r & 1\\ 1 & s\end{array}\right],$$

where r and s are any real numbers.

- (c) The set of all diagonal $n \times n$ matrices.
- (d) The set of all 3×3 matrices of the form

$$\left[\begin{array}{rrrr}a&0&b\\0&c&0\\d&0&e\end{array}\right],$$

where a, b, c, d, e are any real numbers.

- (e) The set $\{0\}$ consisting of only the number 0.
- (f) The set \mathbb{Q} of rational numbers.
- (g) The set \mathbb{C} of complex numbers:

$$\mathbb{C} = \{a + bi \mid a, b \text{ in } \mathbb{R}\},\$$

where $i = \sqrt{-1}$.