Math 224
 Vector Spaces

Definition. A vector space a set V of objects called vectors, together with :

- A rule for adding any two vectors \mathbf{v} and \mathbf{w} to produce a vector $\mathbf{v}+\mathbf{w}$ in V. Note that this means that V must be closed under vector addition.
- A rule for multiplying any vector \mathbf{v} in V by any scalar r in \mathbb{R} to produce a vector $r \mathbf{v}$ in V. Note that this means that V must be closed under scalar multiplication.
- There must exist a vector $\mathbf{0}$ in V. Note: this may not always be the vector that you expect to call the zero vector. For each vector \mathbf{v} in V, there must exist a vector $-\mathbf{v}$ in V (see below).
- Properties A1 through A4 and S1 through S4 below must be satisfied for all choices of vectors $\mathbf{u}, \mathbf{v}, \mathbf{w}$ in V and all scalars r, s in \mathbb{R}.

A1 $(\mathbf{u}+\mathbf{v})+\mathbf{w}=\mathbf{u}+(\mathbf{v}+\mathbf{w})$. This means that vector addition must be associative.
A2 $\mathbf{v}+\mathbf{w}=\mathbf{w}+\mathbf{v}$. This means that vector addition must be commutative.
A3 $\mathbf{0}+\mathbf{v}=\mathbf{v}$. This means that $\mathbf{0}$ must the the additive identity of the vector space.
A4 $\mathbf{v}+-\mathbf{v}=\mathbf{0}$. This means that $-\mathbf{v}$ is the additive inverse of \mathbf{v}.
S1 $r(\mathbf{v}+\mathbf{w})=r \mathbf{v}+r \mathbf{w})$. This is a distributive rule for scalar multiplication.
$\mathrm{S} 2(r+s) \mathbf{v}=r \mathbf{v}+s \mathbf{v}$. This is another distributive rule for scalar multiplication.
$\mathrm{S} 3 r(s \mathbf{v})=(r s) \mathbf{v}$. This means that scalar multiplication is associative.
S4 $\mathbf{1 v}=\mathbf{v}$. This means that scalar multiplication preserves scale.

Examples of vector spaces.

1. \mathbb{R}^{n}, with usual vector addition and scalar multiplication, is a vector space for every integer $n \geq 1$.
2. Let F be the set of all real-valued functions with domain \mathbb{R}. The vector sum of two functions f and g in F is defined in the usual way by $(f+g)(x)=f(x)+g(x)$. For any scalar r in \mathbb{R}, scalar multiplication is defined by $(r f)(x)=r f(x)$ is a vector space. Show that F with these operations is a vector space.
3. Show that the set P of all polynomials in the variable x with coefficients in \mathbb{R}, with vector addition and scalar multiplication the usual addition of polynomials and multiplication of a polynomial by a scalar, is a vector space.
4. Show that the set $M_{m, n}$ of all $m \times n$ matrices with real entries, with the usual addition of matrices and multiplication of a matrix by a scalar, is a vector space.
5. Show that the set P_{n} of all polynomials in x with coefficients in \mathbb{R} of degree less than or equal to n, together with the zero polynomial, with usual addition and scalar multiplication, is a vector space.
6. Consider the set \mathbb{R}^{2}, with the usual addition, but with scalar multiplication defined by $r[x, y]=[r y, r x]$. Show that this set is a vector space.
7. Consider the set \mathbb{R}^{2}, with addition defined by $[x, y] \ddagger[a, b]=[x+a+1, y+b]$, and with scalar multiplication defined by $r[x, y]=[r x+r-1, r y]$. Is this set a vector space? Show, by verifying A1-A4 and S1-S4, that this set is a vector space. Note: The zero vector will NOT be the vector $[0,0]$. What is the zero vector in this vector space.
8. Determine whether the given set is closed under the usual operations of addition and scalar multiplication, and is a vector space.
(a) The set of all upper-triangular $n \times n$ matrices (i.e. the set of all $n \times n$ matrices with zeros below the main diagonal).
(b) The set of all 2×2 matrices of the form

$$
\left[\begin{array}{ll}
r & 1 \\
1 & s
\end{array}\right],
$$

where r and s are any real numbers.
(c) The set of all diagonal $n \times n$ matrices.
(d) The set of all 3×3 matrices of the form

$$
\left[\begin{array}{lll}
a & 0 & b \\
0 & c & 0 \\
d & 0 & e
\end{array}\right],
$$

where a, b, c, d, e are any real numbers.
(e) The set $\{0\}$ consisting of only the number 0 .
(f) The set \mathbb{Q} of rational numbers.
(g) The set \mathbb{C} of complex numbers:

$$
\mathbb{C}=\{a+b i \mid a, b \text { in } \mathbb{R}\}
$$

where $i=\sqrt{-1}$.

