Math 224

Tuesday, November 27, 2007

Basic Properties of Vector Spaces

1. Definition. Given vectors $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{k}}$ in a vector space V and scalars $r_{1}, r_{2}, \ldots, r_{k}$ in \mathbb{R}, the vector

$$
r_{1} \mathbf{v}_{\mathbf{1}}+r_{2} \mathbf{v}_{\mathbf{2}}+\ldots+r_{k} \mathbf{v}_{\mathbf{k}}
$$

is a linear combination of the vectors $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{k}}$ with coefficients $r_{1}, r_{2}, \ldots, r_{k}$. Example.
2. Definition. Let X be a subset of a vector space V. The span of X is the set of all linear combinations of vectors in X, and is denoted $\operatorname{sp}(X)$.
Example.
3. Definition. A subset W of a vector space V is a subspace of V if W is nonempty and satisfies the following two conditions:
(a) W is closed under vector addition: if \mathbf{v} and \mathbf{w} are in W, then $\mathbf{v}+\mathbf{w}$ is in W.
(b) W is closed under scalar multiplication: if \mathbf{v} is in W and r is any scalar in \mathbb{R}, then $r \mathbf{v}$ is in W.

Example.

4. Definition. Let X be a set of vectors in a vector space V. A dependence relation among vectors $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{k}}$ in the set X is an equation of the form

$$
r_{1} \mathbf{v}_{\mathbf{1}}+r_{2} \mathbf{v}_{\mathbf{2}}+\ldots+r_{k} \mathbf{v}_{\mathbf{k}}=\mathbf{0}
$$

where at least one of the scalars r_{j} is NOT equal to 0 . If such a dependence relation exists, then X is a linearly dependent set of vectors. If no such relation exists, then X is a linearly independent set of vectors.
Example.
5. Definition. Let V be a vector space. A set of vectors in V is a basis for V if the following two conditions are met:
(a) The set of vectors spans V, i.e. any vector in V can be written as a linear combination of vectors in the basis set.
(b) The set of vectors is linearly independent.

Example.

6. Definition. The number of elements in a basis for a (finitely generated) vector space V is the dimension of V, and is denoted by $\operatorname{dim}(V)$.

Example.

