Math 224
Thursday, October 18, 2007

## Theorem 5.2: Matrix Summary of Eigenvalues of $A$

Let $A$ be an $n \times n$ matrix, and let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ be (possibly complex) scalars and let $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{n}}$ be non-zero vectors in $n$-space ( $n$-space means either $\mathbf{R}^{n}$ or $\mathbf{C}^{n}$ ). Let $C$ be the $n \times n$ matrix having $\mathbf{v}_{\mathbf{j}}$ as $j$-th column vector, and let $D$ be the $n \times n$ matrix having the $\lambda_{i}$ on the main diagonal and 0 's elsewhere.

1. Compute $A C$ (in terms of $A$ and the column vectors $\mathbf{v}_{\mathbf{i}}$ ).
2. Compute $C D$ (in terms of the column vectors $\mathbf{v}_{\mathbf{i}}$ and the scalars $\lambda_{i}$ ).
3. Conclude that $A C=C D$ if and only if:
4. Restate the conclusion above in words:

Definition 5.3: An $n \times n$ matrix $A$ is diagonalizable if there exists an invertible matrix $C$ such that $C^{-1} A C=D$, where $D$ is a diagonal matrix. We say that the matrix $C$ diagonalizes the matrix $A$.

## Corollary 1: A Criterion for Diagonalization

Let $A$ be an $n \times n$ matrix, and let $C$ and $D$ be as in Theorem 5.2. Complete the following statements.

1. The $n \times n$ matrix $C$ is invertible if and only if $\operatorname{rank}(\mathrm{C})$
2. $\operatorname{rank}(\mathrm{C})$ (insert answer from previous statement) if and only if the column vectors of $C$ are
3. If (and only if) $C$ is invertible, we can rewrite $A C=C D$ as
4. Conclude: An $n \times n$ matrix $A$ is diagonalizable if and only if there are $n$ eigenvectors of $A$ that are
5. We can restate this conclusion as follows. An $n \times n$ matrix $A$ is diagonalizable if and only if $n$-space has a basis consisting of

## Corollary 2: Computation of $A^{k}$

Suppose that $A$ is an $n \times n$ matrix $A$ with $n$ eigenvectors and eigenvalues. Construct the matrices $C$ and $D$ (as in Theorem 5.2) so that $A C=C D$. Suppose that the $n$ eigenvectors are independent, so that $C$ is invertible, and we have $A=C D C^{-1}$. Find a nice expression for $A^{k}$.

