
Kenyon College paquind@kenyon.edu

Practice Problems: Taylor and Maclaurin Series

- 1. Find the Taylor series for $f(x) = e^x$ centered at x = 3.
- 2. Find the Maclaurin series for $f(x) = e^{5x}$.
- 3. Find the Taylor series for $f(x) = \sin x$ centered at $x = \pi/2$.
- 4. Use a known Maclaurin series to obtain the Maclaurin series for the function $f(x) = \cos(\pi x)$.
- 5. Use a known Maclaurin series to obtain the Maclaurin series for the function $f(x) = e^{-x/2}$.
- 6. Use a known Maclaurin series to obtain the Maclaurin series for the function $f(x) = x^2 e^{-x}$.
- 7. Use a known Maclaurin series to obtain the Maclaurin series for the function $f(x) = \frac{\sin x}{x}$. Use the series that you obtain to evaluate the indefinite integral $\int \frac{\sin x}{x} dx$ as an infinite series.
- 8. Find the sum of the series $\sum_{n=0}^{\infty} \frac{(-1)^n \pi^{2n}}{6^{2n}(2n)!}.$
- 9. Find the sum of the series $\sum_{n=0}^{\infty} \frac{3^n}{5^n n!}.$
- 10. The graph of f(x) is shown below. Explain why the series

$$1.6 - 0.8(x - 1) + 0.4(x - 1)^{2} - 0.1(x - 1)^{3} + \cdots$$

is not the Taylor series of f centered at x = 1.

