Math 224
 Quiz 7 Solutions
 Thursday, November 29, 2007

Note: You are allowed to use Maple for this quiz, but you must show all work to receive credit.

1. Is the matrix

$$
A=\left[\begin{array}{ccc}
2 / 7 & -3 / 7 & 6 / 7 \\
3 / 7 & 6 / 7 & 2 / 7 \\
-6 / 7 & 2 / 7 & 3 / 7
\end{array}\right]
$$

orthogonal? Why or why not?
Solution. A is orthogonal since $A^{T} A=I$.
2. Let $D=C^{-1} A C$ be a diagonal matrix, where C is an orthogonal matrix. Show that A is symmetric.
Solution. Since C is orthogonal, $C^{-1}=C^{T}$. We can rewrite $C^{-1} A C=D$ as $A=C D C^{-1}$. Thus:

$$
\begin{aligned}
A^{T} & =\left(C D C^{-1}\right)^{T} \\
& =\left(C D C^{T}\right)^{T} \\
& =\left(C^{T}\right)^{T} D^{T} C^{T} \\
& =C D C^{T} \\
& =C D C^{-1} \\
& =A
\end{aligned}
$$

3. Find the projection matrix for the subspace

$$
W=\operatorname{sp}([1,2,1,1],[-1,1,0,-1])
$$

in \mathbb{R}^{4}, and use it to find the projection of $\mathbf{b}=[1,2,1,3]$ on W.
Solution. First, we form the matrix

$$
A=\left[\begin{array}{cc}
1 & -1 \\
2 & 1 \\
1 & 0 \\
1 & -1
\end{array}\right]
$$

Then the projection matrix is

$$
P=A\left(A^{T} A\right)^{-1} A^{T}=\left[\begin{array}{cccc}
10 / 21 & -1 / 21 & 3 / 21 & 10 / 21 \\
-1 / 21 & 19 / 21 & 6 / 21 & -1 / 21 \\
3 / 21 & 6 / 21 & 3 / 21 & 3 / 21 \\
10 / 21 & -1 / 21 & 3 / 21 & 10 / 21
\end{array}\right]
$$

Thus the projection of \mathbf{b} on W is

$$
\mathbf{b}_{W}=P \mathbf{b}=[41 / 21,40 / 21,9 / 7,41 / 21] .
$$

4. Show that the projection matrix

$$
P=A\left(A^{T} A\right)^{-1} A^{T}
$$

satisfies $P^{2}=P$. (Here A is the $n \times k$ matrix with column vectors $\mathbf{a}_{\mathbf{1}}, \mathbf{a}_{\mathbf{2}}, \ldots, \mathbf{a}_{\mathbf{k}}$, where $\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{\mathbf{k}}\right\}$ is a basis for a subspace W of \mathbb{R}^{n}).

Solution.

$$
\begin{aligned}
P^{2} & =\left(A\left(A^{T} A\right)^{-1} A^{T}\right)^{2} \\
& =\left(A\left(A^{T} A\right)^{-1} A^{T}\right)\left(A\left(A^{T} A\right)^{-1} A^{T}\right) \\
& =A\left(A^{T} A\right)^{-1}\left(A^{T} A\right)\left(A^{T} A\right)^{-1} A^{T} \\
& =A\left(A^{T} A\right)^{-1} A^{T} \\
& =P
\end{aligned}
$$

