Math 224 Quiz 4 Thursday, October 18, 2007

Note: You are allowed to use Maple for computation on this quiz.

1. Find the volume of the 4-box in \mathbb{R}^5 determined by the vectors

[1, 1, 1, 0, 1], [0, 1, 1, 0, 0], [3, 0, 1, 0, 0], [1, -1, 0, 0, 1].

Solution. We form the matrix

$$A = \begin{bmatrix} 1 & 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 \\ 3 & 0 & 1 & 0 & 0 \\ 1 & -1 & 0 & 0 & 1 \end{bmatrix}$$

Using Maple, we compute $det(A^T A) = 9$, so the volume is $\sqrt{9} = 3$.

2. Determine whether the points (2, 0, 1, 3), (3, 1, 0, 1), (-1, 2, 0, 4), and (3, 1, 2, 4) lie in a plane in \mathbb{R}^4 .

Solution. The points are coplanar if and only if the 3-box in \mathbb{R}^4 determined by

$$(3,1,0,1) - (2,0,1,3) = [1,1,-1,-2]$$

$$(-1,2,0,4) - (2,0,1,3) = [-3,2,-1,1]$$

$$(3,1,2,4) - (2,0,1,3) = [1,1,1,1]$$

We construct the matrix A with these vectors as column vectors, and find that $det(A^T A) = 378$, so the points are not coplanar.

3. Let $T : \mathbf{R}^3 \to \mathbf{R}^3$ be defined by T([x, y, z]) = [x - 2y, 3x + z, 4x + 3y]. Find the volume of the image under T of the box $0 \le x \le 2, -1 \le y \le 3, 2 \le z \le 5$ in \mathbf{R}^3 .

Solution. The standard matrix representation for T is

$$A = \begin{bmatrix} 1 & -2 & 0 \\ 3 & 0 & 1 \\ 4 & 3 & 0 \end{bmatrix}.$$

We compute det(A) = -11, so the volume-change factor is 11. The original box in \mathbb{R}^3 has volume (2-0)(3-(-1))(5-2) = 24, so its image under T has volume $(24)(11) = \boxed{264}$.

Mathematics Department

4. Let $T : \mathbf{R}^n \to \mathbf{R}^n$ be a linear transformation of rank n with standard matrix representation A. Let G be an n-box in \mathbf{R}^n of volume V. Find an expression for the volume of the image of G under $T \circ T$.

Solution. Recall (Section 2.3) that a composition of two linear transformations T and T' yields a linear transformation $T' \circ T$ having as its associated matrix the product of the matrices associated with T' and T, in that order. Thus if A is the standard matrix representation of T, then $A \cdot A = A^2$ is the standard matrix representation of $T \circ T$. Thus the volume-change factor for $T \circ T$ is $|\det(A^2)| = |(\det(A))^2| = (\det(A))^2$. Thus the volume of the image of G under $T \circ T$ is $\left|\det(A^2) \cdot V = (\det(A))^2 \cdot V\right|$.