Math 224 Quiz 4
 Thursday, October 18, 2007

Note: You are allowed to use Maple for computation on this quiz.

1. Find the volume of the 4 -box in \mathbf{R}^{5} determined by the vectors

$$
[1,1,1,0,1],[0,1,1,0,0],[3,0,1,0,0],[1,-1,0,0,1] .
$$

Solution. We form the matrix

$$
A=\left[\begin{array}{ccccc}
1 & 1 & 1 & 0 & 1 \\
0 & 1 & 1 & 0 & 0 \\
3 & 0 & 1 & 0 & 0 \\
1 & -1 & 0 & 0 & 1
\end{array}\right]
$$

Using Maple, we compute $\operatorname{det}\left(A^{T} A\right)=9$, so the volume is $\sqrt{9}=3$.
2. Determine whether the points $(2,0,1,3),(3,1,0,1),(-1,2,0,4)$, and $(3,1,2,4)$ lie in a plane in \mathbf{R}^{4}.
Solution. The points are coplanar if and only if the 3-box in \mathbf{R}^{4} determined by

$$
\begin{aligned}
(3,1,0,1)-(2,0,1,3) & =[1,1,-1,-2] \\
(-1,2,0,4)-(2,0,1,3) & =[-3,2,-1,1] \\
(3,1,2,4)-(2,0,1,3) & =[1,1,1,1]
\end{aligned}
$$

We construct the matrix A with these vectors as column vectors, and find that $\operatorname{det}\left(A^{T} A\right)=378$, so the points are not coplanar.
3. Let $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{3}$ be defined by $T([x, y, z])=[x-2 y, 3 x+z, 4 x+3 y]$. Find the volume of the image under T of the box $0 \leq x \leq 2,-1 \leq y \leq 3,2 \leq z \leq 5$ in \mathbf{R}^{3}.
Solution. The standard matrix representation for T is

$$
A=\left[\begin{array}{ccc}
1 & -2 & 0 \\
3 & 0 & 1 \\
4 & 3 & 0
\end{array}\right]
$$

We compute $\operatorname{det}(A)=-11$, so the volume-change factor is 11 . The original box in \mathbf{R}^{3} has volume $(2-0)(3-(-1))(5-2)=24$, so its image under T has volume $(24)(11)=264$.
4. Let $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ be a linear transformation of rank n with standard matrix representation A. Let G be an n-box in \mathbf{R}^{n} of volume V. Find an expression for the volume of the image of G under $T \circ T$.
Solution. Recall (Section 2.3) that a composition of two linear transformations T and T^{\prime} yields a linear transformation $T^{\prime} \circ T$ having as its associated matrix the product of the matrices associated with T^{\prime} and T, in that order. Thus if A is the standard matrix representation of T, then $A \cdot A=A^{2}$ is the standard matrix representation of $T \circ T$. Thus the volume-change factor for $T \circ T$ is $\left|\operatorname{det}\left(A^{2}\right)\right|=\left|(\operatorname{det}(A))^{2}\right|=(\operatorname{det}(A))^{2}$. Thus the volume of the image of G under $T \circ T$ is $\operatorname{det}\left(A^{2}\right) \cdot V=(\operatorname{det}(A))^{2} \cdot V$.

