Math 224
 Quiz 3 Solutions Thursday, October 11, 2007

1. Find the determinant of

$$
A=\left[\begin{array}{lll}
3 & 2 & 4 \\
0 & 1 & 2 \\
1 & 4 & 1
\end{array}\right]
$$

Solution. Expanding along the second row, we obtain

$$
\begin{aligned}
\operatorname{det}(A) & =0 \cdot(-1)^{2+1}\left|\begin{array}{cc}
2 & 4 \\
4 & 1
\end{array}\right|+1 \cdot(-1)^{2+2}\left|\begin{array}{cc}
3 & 4 \\
1 & 1
\end{array}\right|+2 \cdot(-1)^{2+3}\left|\begin{array}{cc}
3 & 2 \\
1 & 4
\end{array}\right| \\
& =(3-4)-2 \cdot(12-2) \\
& =-1-20 \\
& =-21
\end{aligned}
$$

2. Suppose that A is a 3×3 matrix with determinant 2 . Find $\operatorname{det}(3 A)$.

Solution. Since A is a 3×3 matrix, A has 3 rows. $3 A$ is the matrix obtained by multiplying each entry of A by 3 . Thus, if A has row vectors $\mathbf{a}_{\mathbf{1}}, \mathbf{a}_{\mathbf{2}}$, and $\mathbf{a}_{\mathbf{3}}, 3 \mathrm{~A}$ has row vectors $\mathbf{3} \mathbf{a}_{\mathbf{1}}, \mathbf{3} \mathbf{a}_{\mathbf{2}}$, and $\mathbf{3} \mathbf{a}_{\mathbf{3}}$. Since multiplying a single row of a matrix A by a scalar r has the effect of multiplying the determinant of A by r, we obtain:

$$
\operatorname{det}(3 A)=3 \cdot 3 \cdot 3 \operatorname{det}(A)=27 \cdot 2=54
$$

3. Suppose that A is a 3×3 matrix with row vectors \mathbf{a}, \mathbf{b}, and \mathbf{c}, and that $\operatorname{det}(A)=3$. Find the determinant of the matrix with row vectors $\mathbf{a}+\mathbf{a}, \mathbf{a}+\mathbf{b}$, $\mathbf{a}+\mathbf{c}$.

Solution. First, note that $\mathbf{a}+\mathbf{a}=\mathbf{2 a}$, so that the first row of the given matrix is obtained my multiplying the first row of A by 2 . We know that this has the effect of multiplying the determinant of A by 2 . Next, rows 2 and 3 of the given matrix are obtained by adding a scalar multiple of a row of A to another row of A, which does not change the determinant. Thus the determinant of the given matrix is

$$
2 \cdot \operatorname{det}(A)=2 \cdot 3=6
$$

4. Suppose that A is a square matrix with $\operatorname{det}(A)=5$. Find $\operatorname{det}\left(A^{T} A\right)$. Solution.

$$
\begin{aligned}
\operatorname{det}\left(A^{T} A\right) & =\operatorname{det}\left(A^{T}\right) \operatorname{det}(A) \\
& =\operatorname{det}(A) \operatorname{det}(A) \\
& =5 \cdot 5 \\
& =25 .
\end{aligned}
$$

5. Is the matrix

$$
A=\left[\begin{array}{ccc}
3 & 0 & 3 \\
4 & 1 & -2 \\
-5 & 1 & 4
\end{array}\right]
$$

invertible?
Solution. $\operatorname{det}(A) \neq 0$, so A is invertible.

