Math 224 Quiz 2
 Thursday, September 13, 2007

1. Reduce the matrix $A=\left[\begin{array}{ccc}2 & 1 & 4 \\ 1 & 3 & 2 \\ 3 & -1 & 6\end{array}\right]$ to row-echelon form.

Solution. $\left[\begin{array}{ccc}2 & 1 & 4 \\ 1 & 3 & 2 \\ 3 & -1 & 6\end{array}\right] \sim\left[\begin{array}{ccc}1 & 3 & 2 \\ 0 & -5 & 0 \\ 0 & -10 & 0\end{array}\right] \sim\left[\begin{array}{ccc}1 & 3 & 2 \\ 0 & -5 & 0 \\ 0 & 0 & 0\end{array}\right]$
2. Find all solutions of the given linear system, using the Gauss method with back substitution.

$$
\begin{aligned}
2 x-y & =8 \\
6 x-5 y & =32
\end{aligned}
$$

Solution. First we form the augmented matrix $[A \mid \mathbf{b}]=\left[\begin{array}{cc|c}2 & -1 & 8 \\ 6 & -5 & 32\end{array}\right]$. Row reducing, we obtain $[A \mid \mathbf{b}] \sim\left[\begin{array}{ll|l}2 & -1 & 8 \\ 0 & -2 & 8\end{array}\right]$. Thus we conclude $-2 y=8$, so $y=-4$ and $2 x-y=8$, so $2 x+4=8$, so $x=2$.
3. Determine whether the vector $\mathbf{b}=\left[\begin{array}{l}3 \\ 5 \\ 3\end{array}\right]$ is in the span of the vectors $\mathbf{v}_{\mathbf{1}}=$ $\left[\begin{array}{l}0 \\ 2 \\ 4\end{array}\right], \mathbf{v}_{\mathbf{2}}=\left[\begin{array}{c}1 \\ 4 \\ -2\end{array}\right], \mathbf{v}_{\mathbf{3}}=\left[\begin{array}{c}-3 \\ -1 \\ 5\end{array}\right]$.
Solution. We need to determine whether or not the system $A \mathbf{x}=\mathbf{b}$ is consistent, where A is the 3×3 matrix consisting of the column vectors $\mathbf{v}_{\mathbf{i}}$. Thus we form the augmented matrix $[A \mid \mathbf{b}]=\left[\begin{array}{ccc|c}0 & 1 & -3 & 3 \\ 2 & 4 & -1 & 5 \\ 4 & -2 & 5 & 3\end{array}\right]$. Next, we row reduce to obtain $[A \mid \mathbf{b}] \sim\left[\begin{array}{ccc|c}2 & 4 & -1 & 5 \\ 0 & 1 & -3 & 3 \\ 0 & -10 & 7 & -7\end{array}\right] \sim\left[\begin{array}{ccc|c}2 & 4 & -1 & 5 \\ 0 & 1 & -3 & 3 \\ 0 & 0 & -23 & 23\end{array}\right]$. Since the linear system $A \mathbf{x}=\mathbf{b}$ is consistent, we conclude that \mathbf{b} is in the span of the vectors $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}$, and $\mathbf{v}_{\mathbf{3}}$.
4. Let $A^{-1}=\left[\begin{array}{lll}1 & 2 & 1 \\ 0 & 3 & 1 \\ 4 & 1 & 2\end{array}\right]$. If possible, find a matrix C such that $A C=\left[\begin{array}{ll}1 & 2 \\ 0 & 1 \\ 4 & 1\end{array}\right]$.

Solution. We have $A C=\left[\begin{array}{ll}1 & 2 \\ 0 & 1 \\ 4 & 1\end{array}\right]$, and since we know A^{-1} exists, multiplication on the left by A^{-1} implies $A^{-1} A C=A^{-1}\left[\begin{array}{ll}1 & 2 \\ 0 & 1 \\ 4 & 1\end{array}\right]$, or $C=A^{-1}\left[\begin{array}{ll}1 & 2 \\ 0 & 1 \\ 4 & 1\end{array}\right]=$ $\left[\begin{array}{lll}1 & 2 & 1 \\ 0 & 3 & 1 \\ 4 & 1 & 2\end{array}\right] \cdot\left[\begin{array}{ll}1 & 2 \\ 0 & 1 \\ 4 & 1\end{array}\right]$. Performing the matrix multiplication, we obtain $C=\left[\begin{array}{cc}5 & 5 \\ 4 & 4 \\ 12 & 11\end{array}\right]$.

