Math 224
 Quiz 1 Solutions Thursday, September 6, 2007

1. Find all scalars c such that the vector $\left[c^{2},-4\right]$ is parallel to the vector $[1,-2]$.

Solution. For $\left[c^{2},-4\right]$ to be parallel to $[1,-2]$, we need a scalar (real number) r such that $r\left[c^{2},-4\right]=[1,-2]$. This implies $\left[r c^{2},-4 r\right]=[1,-2]$. Equating the second components, we obtain $-4 r=-2$, or $r=1 / 2$. Thus $\frac{1}{2} c^{2}=1$, so $c^{2}=2$. Thus $c= \pm \sqrt{2}$.
2. Classify the vectors $[2,1,4,-1]$ and $[0,1,2,4]$ as parallel, perpendicular, or neither.
Solution. First, recall that two vectors are perpendicular if and only if their dot product is zero:

$$
[2,1,4,-1] \cdot[0,1,2,4]=2 \cdot 0+1 \cdot 1+4 \cdot 2+1 \cdot 4=0+1+8+-4=5 \neq 0 .
$$

So the vectors are not perpendicular.
For the vectors to be parallel, we need a scalar r such that $r[2,1,4,-1]=$ $[0,1,2,4]$, which is equivalent to $[2 r, r, 4 r,-r]=[0,1,2,4]$. Equating the first components we obtain $r=0$, and equating the second components we obtain $r=1$. Thus no such r exists, so we conclude that the vectors are not parallel.
3. Let $A=\left[\begin{array}{ccc}1 & 0 & -1 \\ -2 & 2 & 0\end{array}\right]$. Let $B=\left[\begin{array}{c}4 \\ 1 \\ -2\end{array}\right]$. Find $A B$ and $B A$, if defined.

Solution. A is a 2×3 matrix and B is a 3×1 matrix. Thus $A B$ is defined and is a 2×1 matrix and $B A$ is not defined since the number of columns of B is not equal to the number of rows of $A(1 \neq 2)$.

$$
A B=\left[\begin{array}{c}
1 \cdot 4+0 \cdot 2+-1 \cdot-2 \\
-2 \cdot 4+2 \cdot 1+0 \cdot-2
\end{array}\right]=\left[\begin{array}{c}
6 \\
-6
\end{array}\right]
$$

4. If B is an $m \times n$ matrix and if $B=A^{T}$, find the size of

Solution.

(a) A : Since A^{T} is an $m \times n$ matrix, A is an $n \times m$ matrix.
(b) $A A^{T}$: Since A is an $n \times m$ matrix and A^{T} is an $m \times n$ matrix, $A A^{T}$ is an $n \times n$ matrix.
(c) $A^{T} A$: Since A^{T} is an $m \times n$ matrix and A is an $n \times m$ matrix, $A^{T} A$ is an $m \times m$ matrix.

