Math 224 Quiz 1 Solutions Thursday, September 6, 2007

- 1. Find all scalars c such that the vector $[c^2, -4]$ is parallel to the vector [1, -2]. **Solution.** For $[c^2, -4]$ to be parallel to [1, -2], we need a scalar (real number) r such that $r[c^2, -4] = [1, -2]$. This implies $[rc^2, -4r] = [1, -2]$. Equating the second components, we obtain -4r = -2, or r = 1/2. Thus $\frac{1}{2}c^2 = 1$, so $c^2 = 2$. Thus $c = \pm \sqrt{2}$.
- 2. Classify the vectors [2, 1, 4, -1] and [0, 1, 2, 4] as parallel, perpendicular, or neither.

Solution. First, recall that two vectors are perpendicular if and only if their dot product is zero:

$$[2, 1, 4, -1] \cdot [0, 1, 2, 4] = 2 \cdot 0 + 1 \cdot 1 + 4 \cdot 2 + 1 \cdot 4 = 0 + 1 + 8 + -4 = 5 \neq 0.$$

So the vectors are not perpendicular.

For the vectors to be parallel, we need a scalar r such that r[2, 1, 4, -1] = [0, 1, 2, 4], which is equivalent to [2r, r, 4r, -r] = [0, 1, 2, 4]. Equating the first components we obtain r = 0, and equating the second components we obtain r = 1. Thus no such r exists, so we conclude that the vectors are not parallel.

3. Let
$$A = \begin{bmatrix} 1 & 0 & -1 \\ -2 & 2 & 0 \end{bmatrix}$$
. Let $B = \begin{bmatrix} 4 \\ 1 \\ -2 \end{bmatrix}$. Find AB and BA , if defined.

Solution. A is a 2×3 matrix and B is a 3×1 matrix. Thus AB is defined and is a 2×1 matrix and BA is not defined since the number of columns of B is not equal to the number of rows of A $(1 \neq 2)$.

$$AB = \begin{bmatrix} 1 \cdot 4 + 0 \cdot 2 + -1 \cdot -2 \\ -2 \cdot 4 + 2 \cdot 1 + 0 \cdot -2 \end{bmatrix} = \begin{bmatrix} 6 \\ -6 \end{bmatrix}$$

- 4. If B is an $m \times n$ matrix and if $B = A^T$, find the size of **Solution.**
 - (a) A: Since A^T is an $m \times n$ matrix, A is an $n \times m$ matrix.
 - (b) AA^T : Since A is an $n \times m$ matrix and A^T is an $m \times n$ matrix, AA^T is an $n \times n$ matrix.
 - (c) $A^T A$: Since A^T is an $m \times n$ matrix and A is an $n \times m$ matrix, $A^T A$ is an $m \times m$ matrix.