Math 224

Tuesday, November 6, 2007
Projections

How to find the orthogonal complement of a subspace W of \mathbf{R}^{n}

1. Find a basis for W. Often, this will be given.
2. Form the matrix A whose rows are the basis vectors for W.
3. The nullspace of A (i.e. the solution space of $A \mathbf{x}=\mathbf{0}$) is W^{\perp}.

Exercises.

1. Prove that W^{\perp} is a subspace of \mathbf{R}^{n}.
2. Suppose that $\operatorname{dim}(W)=k$. Find $\operatorname{dim}\left(W^{\perp}\right)$.

An important property. Any vector \mathbf{b} in \mathbf{R}^{n} can be expressed uniquely in the form

$$
\mathbf{b}=\mathbf{b}_{W}+\mathbf{b}_{W^{\perp}}
$$

where \mathbf{b}_{W} is in W and $\mathbf{b}_{W^{\perp}}$ is in W^{\perp}. We call \mathbf{b}_{W} the projection of \mathbf{b} on W.
Note: The steps that follow are what the textbook refers to as the boxed procedure on p. 333. You should use these steps to find the projection of \mathbf{b} on W (and understand why they work).

How to find the projection of b on W.

1. Find a basis $\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{k}}\right\}$ for the subspace W. Often, this will be given.
2. Form the matrix A whose row vectors consist of the basis vectors $\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{n}}\right\}$ for W.
3. Find a basis $\left\{\mathbf{v}_{\mathbf{k}+\mathbf{1}}, \mathbf{v}_{\mathbf{k}+\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{n}}\right\}$ for W^{\perp} by solving $A \mathbf{x}=\mathbf{0}$.
4. Then $\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{n}}\right\}$ is a basis for \mathbf{R}^{n}.
5. Write the original vector \mathbf{b} as a linear combination of $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{n}}$. This means that we need to find scalars $r_{1}, r_{2}, \ldots, r_{n}$ such that

$$
\mathbf{b}=r_{1} \mathbf{v}_{\mathbf{1}}+r_{2} \mathbf{v}_{\mathbf{2}}+\ldots r_{n} \mathbf{v}_{\mathbf{n}}
$$

Recall that we can do this by solving the linear system $M \mathbf{r}=\mathbf{b}$, where M is the matrix whose column vectors consist of the basis vectors $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{n}}$. To solve the linear system, we row-reduce the augmented matrix $[M \mid \mathbf{b}]$ and find $r_{1}, r_{2}, \ldots, r_{n}$.
6. Then $\mathbf{b}_{W}=r_{1} \mathbf{v}_{\mathbf{1}}+r_{2} \mathbf{v}_{\mathbf{2}}+\ldots+r_{k} \mathbf{v}_{\mathbf{k}}$ is the projection of \mathbf{b} on W.

