Math 224 Tuesday, November 6, 2007 Projections

How to find the orthogonal complement of a subspace W of \mathbb{R}^n

- 1. Find a basis for W. Often, this will be given.
- 2. Form the matrix A whose rows are the basis vectors for W.
- 3. The nullspace of A (i.e. the solution space of $A\mathbf{x} = \mathbf{0}$) is W^{\perp} .

Exercises.

1. Prove that W^{\perp} is a subspace of \mathbf{R}^{n} .

2. Suppose that $\dim(W) = k$. Find $\dim(W^{\perp})$.

An important property. Any vector \mathbf{b} in \mathbf{R}^n can be expressed uniquely in the form

$$\mathbf{b} = \mathbf{b}_W + \mathbf{b}_{W^\perp}$$

where \mathbf{b}_W is in W and $\mathbf{b}_{W^{\perp}}$ is in W^{\perp} . We call \mathbf{b}_W the **projection** of \mathbf{b} on W.

Note: The steps that follow are what the textbook refers to as the *boxed procedure* on p. 333. You should use these steps to find the projection of \mathbf{b} on W (and understand why they work).

How to find the projection of \mathbf{b} on W.

- 1. Find a basis $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ for the subspace W. Often, this will be given.
- 2. Form the matrix A whose row vectors consist of the basis vectors $\{\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_n}\}$ for W.
- 3. Find a basis $\{\mathbf{v}_{k+1}, \mathbf{v}_{k+2}, \dots, \mathbf{v}_n\}$ for W^{\perp} by solving $A\mathbf{x} = \mathbf{0}$.
- 4. Then $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ is a basis for \mathbf{R}^n .
- 5. Write the original vector **b** as a linear combination of $\mathbf{v_1}, \mathbf{v_2}, \ldots, \mathbf{v_n}$. This means that we need to find scalars r_1, r_2, \ldots, r_n such that

$$\mathbf{b} = r_1 \mathbf{v_1} + r_2 \mathbf{v_2} + \dots r_n \mathbf{v_n}.$$

Recall that we can do this by solving the linear system $M\mathbf{r} = \mathbf{b}$, where M is the matrix whose column vectors consist of the basis vectors $\mathbf{v_1}, \mathbf{v_2}, \ldots, \mathbf{v_n}$. To solve the linear system, we row-reduce the augmented matrix $[M|\mathbf{b}]$ and find r_1, r_2, \ldots, r_n .

6. Then $\mathbf{b}_W = r_1 \mathbf{v_1} + r_2 \mathbf{v_2} + \ldots + r_k \mathbf{v_k}$ is the projection of **b** on *W*.