Math 224 Thursday, November 15, 2007

 $\operatorname{rank}(A^T A) = \operatorname{rank}(A)$

Let A be an $m \times n$ matrix. Then $A^T A$ is an $n \times n$ matrix with the **same rank** as A. **Proof.**

- 1. How many columns does A have? What is the size of $A^T A$? How many columns does $A^T A$ have?
- 2. Write down the rank equation for the matrix A.
- 3. Write down the rank equation for the matrix $A^T A$.
- 4. Conclude that if we can show that $\operatorname{nullity}(A) = \operatorname{nullity}(A^T A)$, then we can conclude that A and $A^T A$ have the same rank.
- 5. Our goal now is to show that A and $A^T A$ have the same nullspace.
 - (a) Show that if **v** is a vector in the nullspace of A, then **v** must also be in the nullspace of $A^T A$.

(b) Show if that if \mathbf{v} is a vector in the nullspace of $A^T A$, then \mathbf{v} must also be in the nullspace of A. Be careful: this is tricky. Hint: try to show that $||A\mathbf{v}|| = 0$, and conclude that $A\mathbf{v} = \mathbf{0}$.

(c) Conclude that A and $A^T A$ have the same nullspace.

6. Conclude that A and $A^T A$ have the same rank.