Math 224

Thursday, November 15, 2007

$$
\operatorname{rank}\left(A^{T} A\right)=\operatorname{rank}(A)
$$

Let A be an $m \times n$ matrix. Then $A^{T} A$ is an $n \times n$ matrix with the same rank as A. Proof.

1. How many columns does A have? What is the size of $A^{T} A$? How many columns does $A^{T} A$ have?
2. Write down the rank equation for the matrix A.
3. Write down the rank equation for the matrix $A^{T} A$.
4. Conclude that if we can show that nullity $(A)=\operatorname{nullity}\left(A^{T} A\right)$, then we can conclude that A and $A^{T} A$ have the same rank.
5. Our goal now is to show that A and $A^{T} A$ have the same nullspace.
(a) Show that if \mathbf{v} is a vector in the nullspace of A, then \mathbf{v} must also be in the nullspace of $A^{T} A$.
(b) Show if that if \mathbf{v} is a vector in the nullspace of $A^{T} A$, then \mathbf{v} must also be in the nullspace of A. Be careful: this is tricky. Hint: try to show that $\|A \mathbf{v}\|=0$, and conclude that $A \mathbf{v}=\mathbf{0}$.
(c) Conclude that A and $A^{T} A$ have the same nullspace.
6. Conclude that A and $A^{T} A$ have the same rank.
