Math 224 Practice Exam 3

Note: You are allowed to use Maple, but you must show all work to receive credit. In particular, you are allowed to use the GramSchmidt command in Maple.

- 1. (a) Suppose that A is an $n \times 3$ matrix with columns $\mathbf{v_1}, \mathbf{v_2}, \mathbf{v_3}$. Suppose also that $\mathbf{v_1}, \mathbf{v_2}, \mathbf{v_3}$ are mutually orthogonal and that $||\mathbf{v_1}|| = ||\mathbf{v_2}|| = ||\mathbf{v_3}|| = 4$. Find $A^T A$.
 - (b) Suppose that A is an $n \times 3$ matrix with columns $\mathbf{v_1}, \mathbf{v_2}, \mathbf{v_3}$. Suppose also that $\mathbf{v_1}, \mathbf{v_2}, \mathbf{v_3}$ are mutually orthogonal and that $||\mathbf{v_1}|| = 1, ||\mathbf{v_2}|| = 2, ||\mathbf{v_3}|| = 3$. Find $A^T A$.
- 2. Consider the subspace

$$W = \operatorname{sp}([1, 2, 3, 4], [5, 6, 7, 8])$$

of \mathbb{R}^4 .

- (a) Find a basis for W^{\perp} .
- (b) Write $\mathbf{b} = [3, -2, 1, 5]$ in the form

$$\mathbf{b} = \mathbf{b}_{\mathbf{W}} + \mathbf{b}_{\mathbf{W}^{\perp}},$$

where $\mathbf{b}_{\mathbf{W}}$ is in W and $\mathbf{b}_{\mathbf{W}^{\perp}}$ is in W^{\perp} .

- (c) Find the projection matrix P for W.
- (d) Find $\mathbf{b}_{\mathbf{W}}$ using P, and confirm that you get the same result using both methods.
- 3. (a) Show that the set $\{[2,3,1], [-1,1,-1]\}$ is orthogonal.
 - (b) Find the projection of $\mathbf{b} = [2, 1, 4]$ on $W = \operatorname{sp}([2, 3, 1], [-1, 1, -1])$. Hint: you can make the computation easier by using your result from part (a).
- 4. Find an orthogonal basis for \mathbb{R}^3 that contains the vector [1, 1, 1].
- 5. If A is an orthogonal matrix, show that $||A\mathbf{x}|| = ||\mathbf{x}||$.
- 6. What are the possible eigenvalues of a projection matrix?
- 7. Suppose that P is the projection matrix corresponding to a 3-dimensional subspace W of \mathbb{R}^4 . What is the rank of P?
- 8. Explain geometrically why $P^2 = P$ for any projection matrix P.
- 9. Suppose that $\{\mathbf{a_1}, \mathbf{a_2}, \dots, \mathbf{a_k}\}$ is an *orthonormal* basis for a subspace W of \mathbb{R}^n . Show that the projection matrix for W is $P = AA^T$.

- 10. Find the coordinate vector of $x + x^4$ in P_4 relative to the basis $B = (1, 2x 1, x^3 + x^4, 2x^3, x^2 + 2)$.
- 11. Show that the set $B' = ((x+1)^3, (x+1)^2, x+1, 1)$ is a basis for P_3 .
- 12. Determine whether each of the following statements are True or False. No explanation is necessary.
 - (a) Every vector space contains at least one vector.
 - (b) Every vector space contains at least two vectors.
 - (c) Any two bases in a finite-dimensional vector space V have the same number of elements.
 - (d) The projection of \mathbf{b} on $sp(\mathbf{a})$ is a scalar multiple of \mathbf{b} .
 - (e) The projection of \mathbf{b} on $\operatorname{sp}(\mathbf{a})$ is a scalar multiple of \mathbf{a} .
 - (f) The intersection of W and W^{\perp} is empty.
 - (g) If A and B are orthogonal matrices, then AB is orthogonal.
 - (h) Every projection matrix is symmetric.