Math 224
Practice Exam 2

1. Find each of the following, given that A is a 3×3 matrix with determinant 7 .
(a) $\operatorname{det}(3 A)$
(b) $\operatorname{det}\left(A^{-1}\right)$
(c) $\operatorname{det}\left(2 A^{-1}\right)$
(d) $\operatorname{det}\left((2 A)^{-1}\right)$
2. Show that a square matrix A is invertible if and only if $A^{T} A$ is invertible.
3. Find the volume of the 4 -box in \mathbf{R}^{4} determined by the vectors

$$
[1,-1,0,1],[2,-1,3,1],[-1,4,2,-1],[0,1,0,2] .
$$

4. Prove the following identity for vectors \mathbf{u} and \mathbf{v} in \mathbf{R}^{3} and scalars k :

$$
(\mathbf{u}+k \mathbf{v}) \times \mathbf{v}=\mathbf{u} \times \mathbf{v}
$$

5. Diagonalize the following matrix A, if possible:

$$
A=\left[\begin{array}{ccc}
2 & 4 & 3 \\
-4 & -6 & -3 \\
3 & 3 & 1
\end{array}\right]
$$

6. Diagonalize the following matrix A, and find a formula for A^{k} in terms of k :

$$
A=\left[\begin{array}{ccc}
1 & 3 & 3 \\
-3 & -5 & -3 \\
3 & 3 & 1
\end{array}\right]
$$

7. Suppose that the characteristic polynomial of A is

$$
p(\lambda)=(\lambda-1)(\lambda-3)^{2}(\lambda-4)^{3} .
$$

What is the size of A ? Is A invertible? Explain your reasoning.
8. Show that if \mathbf{x} is an eigenvector of $A B$, and if $B \mathbf{x} \neq 0$, then $B \mathbf{x}$ is an eigenvector of $B A$.
9. Show that similar matrices have the same eigenvalues.
10. Determine whether each of the following statements are True or False. No explanation is necessary.
(a) For any $n \times n$ matrix A, $\operatorname{det}(4 A)=4 \operatorname{det}(A)$.
(b) For any $n \times n$ matrix A, $\operatorname{det}\left(I_{n}+A\right)=1+\operatorname{det}(A)$, where I_{n} is the $n \times n$ identity matrix.
(c) There is no square matrix A such that $\operatorname{det}\left(A^{T} A\right)=-1$.
(d) Each eigenvalue of A is also an eigenvalue of A^{2}.
(e) Eigenvalues must be non-zero scalars.
(f) Eigenvectors must be non-zero vectors.
(g) If A is an $n \times n$ diagonalizable matrix, then each vector in \mathbf{R}^{n} can be written as a linear combination of eigenvectors of A.
(h) If a 5×5 matrix A has fewer than 5 distinct eigenvalues, then A is not diagonalizable.

