## Math 224 <br> Daily Objectives <br> Class Session 3 <br> Tuesday, September 4, 2007

## A. 1.4: Solving Systems of Linear Equations

- $A x=b$; coefficient matrix $A$
- Augmented matrix
- 3 Elementary row operations
- Invariance of solution sets under elementary row operations (Thm. 1.6)
- Row-echelon form (2 conditions, Def. 1.12)
- Pivot: the first nonzero entry in a row in row-echelon form
- Procedure for row-reducing a matrix $A$ (by hand) to row-echelon form $H$ (3 steps, p. 60)
- Know how to solve a linear system by hand using Gauss reduction with back substitution (reducing the coefficient matrix $A$ to row echelon form and back-substituting)
- Consistent and inconsistent linear systems
- Free variables
- Reduced-row echelon form
- Gauss-Jordan method
- Know how to solve a linear system (with Maple) using the Gauss-Jordan method (reducing the coefficient matrix $A$ to reduced-row echelon form)
- Characterization of solutions of $A x=b$ (Thm. 1.7); $[A \mid b] \sim[H \mid c]$, where $H$ is in row-echelon form
(a) The system $A x=b$ is inconsistent if and only if the augmented matrix [ $H \mid c]$ has a row with all entries 0 to the left of the partition and a nonzero entry to the right of the partition. See Example 3, p. 58.
(b) If $A x=b$ is consistent and every column of $H$ contains a pivot, then the system has a unique solution. See Example 6, p. 61.
(c) If $A x=b$ is consistent and some column of $H$ has no pivot, then the system has infinitely many solutions, with as many free variables as there are pivot-free columns of $H$. See Example 4, p. 59.
- Let $A$ be an $m \times n$ matrix. The linear system $A \mathbf{x}=\mathbf{b}$ is consistent if and only if the vector $\mathbf{b}$ is in the span of the column vectors of $A$.
- Elementary matrix (Def. 1.14)
- Use of elementary matrices (Thm. 1.18)
- Know how to solve linear systems in Maple and interpret the results mathematically.


## B. 1.5: Inverses of Square Matrices

- Definition of inverse matrix; uniqueness of an inverse
- Definition of an invertible matrix
- Inverse of an elementary matrix
- Inverses of products (Thm. 1.10)
- $A C=I$ if and only if $C A=I$
- Equivalent conditions for $A^{-1}$ to exist (Thm. 1.12)

