Math 224
 Homework 8 Solutions

Section 5.2

5.2 \#2 The characteristic polynomial is

$$
p(\lambda)=\operatorname{det}(A-\lambda I)=(\lambda-2)(\lambda-5)
$$

so the eigenvalues of A are $\lambda_{1}=2$ and $\lambda_{2}=5$. The eigenvectors corresponding to λ_{1} are $\mathbf{v}_{\mathbf{1}}=\left[\begin{array}{l}-2 r \\ r\end{array}\right], r \neq 0$. The eigenvectors corresponding to $\lambda_{2}=5$ are $\mathbf{v}_{\mathbf{2}}=\left[\begin{array}{l}s \\ s\end{array}\right], s \neq 0$. Taking $r=s=1$, we find that $C^{-1} A C=D$, where

$$
C=\left[\begin{array}{ll}
-2 & 1 \\
1 & 1
\end{array}\right] \text { and } D=\left[\begin{array}{ll}
2 & 0 \\
0 & 5
\end{array}\right] .
$$

Note that other matrices C are possible by taking different values for r and s.
5.2 \#6 The characteristic polynomial is

$$
p(\lambda)=\operatorname{det}(A-\lambda I)=-(\lambda+1)(\lambda-2)(\lambda-3),
$$

so the eigenvalues of A are $\lambda_{1}=-1, \lambda_{2}=2$, and $\lambda_{3}=3$. The eigenvectors corresponding to $\lambda_{1}=-1$ are $\mathbf{v}_{\mathbf{1}}=\left[\begin{array}{l}-5 r \\ 2 r \\ r\end{array}\right], r \neq 0$. The eigenvectors corresponding to $\lambda_{2}=2$ are $\mathbf{v}_{\mathbf{2}}=\left[\begin{array}{l}-3 s \\ s \\ s\end{array}\right], s \neq 0$. The eigenvectors corresponding to $\lambda_{3}=3$ are $\mathbf{v}_{\mathbf{3}}=\left[\begin{array}{l}-5 t \\ 2 t \\ 2 t\end{array}\right], t \neq 0$. Taking $r=s=t=1$, we find that $C^{-1} A C=D$, where

$$
C=\left[\begin{array}{lll}
-5 & -3 & -3 \\
2 & 1 & 2 \\
1 & 1 & 2
\end{array}\right] \text { and } D=\left[\begin{array}{lll}
-1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 3
\end{array}\right]
$$

Note that other matrices C are possible by taking different values for r, s, and t.
5.2 \#10 The matrix is not diagonalizable since the eigenvalue 3 has algebraic multiplicity 3 but geometric multiplicity 1.
5.2 \#12 The matrix is diagonalizable since it is symmetric.
5.2 \# $\mathbf{1 4}\left[\begin{array}{cc}1 & 0 \\ 0 & -3\end{array}\right]$ and $\left[\begin{array}{cc}-3 & 0 \\ 0 & 1\end{array}\right]$
5.2 \#15 Assume that A is a square matrix such that $D=C^{-1} A C$ is a diagonal matrix for some invertible matrix C. Since $C C^{-1}=I$, we have $\left(C C^{-1}\right)^{T}=\left(C^{-1}\right)^{T} C^{T}=$ $I^{T}=I$, so $\left(C^{T}\right)^{-1}=\left(C^{-1}\right)^{T}$. Thus $D^{T}=\left(C^{-1} A C\right)^{T}=C^{T} A^{T}\left(C^{T}\right)^{-1}$, so A^{T} is similar to the diagonal matrix D^{T}.
$5.2 \# 17 p(\lambda)=\operatorname{det}(A-\lambda I)$, so $p(0)=\operatorname{det}(A)$. On the other hand, $p(\lambda)=(-1)^{n}(\lambda-$ $\left.\lambda_{1}\right)\left(\lambda-\lambda_{2}\right) \cdots\left(\lambda-\lambda_{n}\right)$, so $p(0)=(-1)^{2 n} \lambda_{1} \lambda_{2} \cdots \lambda_{n}$. Thus $\operatorname{det}(A)=\lambda_{1} \lambda_{2} \cdots \lambda_{n}$.

Section 5.3

$\mathbf{5 . 3} \# \mathbf{1 0} \quad A=\left[\begin{array}{lll}6 & 3 & -3 \\ -2 & -1 & 2 \\ 16 & 8 & -7\end{array}\right]$, and $p(\lambda)=-\lambda(\lambda+3)(\lambda-1)$. Thus the eigenvalues of A are $\lambda_{1}=-3, \lambda_{2}=0, \lambda_{3}=1$. The corresponding eigenvectors are $\mathbf{v}_{\mathbf{1}}=\left[\begin{array}{l}r \\ -r \\ 2 r\end{array}\right]$, $r \neq 0 ; \mathbf{v}_{\mathbf{2}}=\left[\begin{array}{l}-s \\ 2 s \\ 0\end{array}\right], s \neq 0 ; \mathbf{v}_{\mathbf{3}}=\left[\begin{array}{l}0 \\ t \\ t\end{array}\right], t \neq 0$. Letting $r=s=t=1$, we obtain $C=\left[\begin{array}{lll}1 & -1 & 0 \\ -1 & 2 & 1 \\ 2 & 0 & 1\end{array}\right]$. Then $C^{-1} A C=D=\left[\begin{array}{lll}-3 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]$, and we obtain the modified system $\mathbf{y}^{\prime}=D \mathbf{y}$. The solution to this system is $\left[\begin{array}{l}y_{1} \\ y_{2} \\ y_{3}\end{array}\right]=$ $\left[\begin{array}{l}K_{1} e^{-3 t} \\ K_{2} \\ K_{3} e^{t}\end{array}\right]$. Thus the solution to the original system is $\mathbf{x}=C \mathbf{y}$:

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
K_{1} e^{-3 t}+K_{2} \\
-K_{1} e^{-3 t}+2 K_{2}+K_{3} e^{3 t} \\
2 K_{1} e^{-3 t}+K_{3} e^{t}
\end{array}\right]
$$

$\mathbf{5 . 3} \# \mathbf{1 2} \quad A=\left[\begin{array}{lll}-3 & 5 & -20 \\ 2 & 0 & 8 \\ 2 & 1 & 7\end{array}\right]$, and $p(\lambda)=(\lambda+1)(\lambda-2)(\lambda-3)$. Thus the eigenvalues of A are $\lambda_{1}=-1, \lambda_{2}=2$, and $\lambda_{3}=3$. The corresponding eigenvectors are

$$
\begin{aligned}
& \mathbf{v}_{\mathbf{1}}=\left[\begin{array}{l}
-5 r \\
2 r \\
r
\end{array}\right], r \neq 0 ; \mathbf{v}_{\mathbf{2}}=\left[\begin{array}{l}
-3 s \\
s \\
s
\end{array}\right], s \neq 0 ; \mathbf{v}_{\mathbf{3}}=\left[\begin{array}{l}
-5 t \\
2 t \\
2 t
\end{array}\right], t \neq 0 . \text { Letting } \\
& r=s=t=1 \text {, we obtain } C=\left[\begin{array}{lll}
-5 & -3 & -5 \\
2 & 1 & 2 \\
1 & 1 & 2
\end{array}\right] . \text { Then } C^{-1} A C=D=
\end{aligned}
$$ $\left[\begin{array}{lll}-1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3\end{array}\right]$, and we obtain the modified system $\mathbf{y}^{\prime}=D \mathbf{y}$. The solution to this system is $\left[\begin{array}{l}y_{1} \\ y_{2} \\ y_{3}\end{array}\right]=\left[\begin{array}{l}K_{1} e^{-t} \\ K_{2} e^{2 t} \\ K_{3} e^{3 t}\end{array}\right]$. Thus the solution to the original system is $\mathbf{x}=C \mathbf{y}$:

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
-5 K_{1} e^{-t}-3 K_{2} e^{2 t}-5 K_{3} e^{3 t} \\
2 K_{1} e^{-t}+K_{2} e^{2 t}+2 K_{3} e^{3 t} \\
K_{1} e^{-t}+K_{2} e^{2 t}+2 K_{3} e^{3 t}
\end{array}\right] .
$$

