Math 224

Homework 7 Solutions

Section 5.1

5.1\#2 $p(\lambda)=\operatorname{det}(A-\lambda I)=(\lambda+3)(\lambda-2)$, so the eigenvalues of A are $\lambda_{1}=-3$ and $\lambda_{2}=2$.

Next, we compute the eigenvectors of A.

$$
(A-(-3) I)=\left[\begin{array}{cc}
10 & 5 \\
10 & -5
\end{array}\right],
$$

which is row equivalent to $\left[\begin{array}{cc}1 & 1 / 2 \\ 0 & 0\end{array}\right]$. Since the second column does not contain a pivot, v_{2} is a free variable, so we set $v_{2}=r$. Then the first row implies $v_{1}=$ $-\frac{1}{2} r$. So the eigenvector corresponding to $\lambda_{1}=-3$ is | $\mathbf{v}_{\mathbf{1}}=\left[\begin{array}{c}-\frac{1}{2} r \\ r\end{array}\right], r \neq 0$. |
| :---: |

For $\lambda_{2}=2$, we the row-reduced form of $(A-2 I)$ is

$$
\left[\begin{array}{ll}
5 & 5 \\
1 & 1 \\
0 & 0
\end{array}\right]
$$

Since the second column does not contain a pivot, v_{2} is a free variable, so we set $v_{2}=s$. Then the first row implies $v_{1}=-s$. So the eigenvector corresponding to $\lambda_{2}=2$ is $\mathbf{v}_{\mathbf{2}}=\left[\begin{array}{c}-s \\ s\end{array}\right], s \neq 0$.
5.1 \#14 $p(\lambda)=\operatorname{det}(A-\lambda I)=-\lambda^{3}+12 \lambda^{2}-48 \lambda+64=(4-\lambda)^{3}$. The roots of $p(\lambda)=0$ are $\lambda_{1}=\lambda_{2}=\lambda_{3}=4$.

$$
(A-4 I)=\left[\begin{array}{lll}
0 & 0 & 0 \\
8 & 0 & 8 \\
0 & 0 & 0
\end{array}\right]
$$

which is row equivalent to $\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$. The second and third columns do not contain a pivot, so we set $v_{2}=r$ and $v_{3}=s$. Then the first row implies $v_{1}=-s$. Thus the eigenvectors corresponding to $\lambda_{1}=\lambda_{2}=\lambda_{3}=4$ are $\left[\begin{array}{c}-r \\ s \\ r\end{array}\right], r$ and s not both 0 .
5.1 \#22 The standard matrix representation of T is

$$
A=\left[\begin{array}{ccc}
3 & -1 & 1 \\
-2 & 2 & -1 \\
2 & 1 & 4
\end{array}\right]
$$

$p(\lambda)=\operatorname{det}(A-\lambda I)=(3-\lambda)(\lambda-1)(\lambda-5)$, so the eigenvalues of A (and hence, the eigenvalues of T are $\lambda_{1}=1, \lambda_{2}=3, \lambda_{3}=5$. The eigenvector corresponding to λ_{1} is $\mathbf{v}_{\mathbf{1}}=\left[\begin{array}{c}-r \\ -r \\ r\end{array}\right], r \neq 0$. The eigenvector corresponding to λ_{2} is $\mathbf{v}_{\mathbf{2}}=\left[\begin{array}{c}-s \\ s \\ s\end{array}\right], s \neq 0$. The eigenvector corresponding to λ_{3} is $\mathbf{v}_{\mathbf{3}}=\left[\begin{array}{c}t \\ -t \\ t\end{array}\right], t \neq 0$.
$5.1 \# 27$

$$
\begin{aligned}
A \mathbf{v} & =\lambda \mathbf{v} \\
A^{2} \mathbf{v} & =A A \mathbf{v} \\
& =A \lambda \mathbf{v} \\
& =\lambda^{2} \mathbf{v}
\end{aligned}
$$

Continuing this process, we obtain

$$
A^{k} \mathbf{v}=\lambda^{k} \mathbf{v}
$$

so that λ^{k} is an eigenvalue of A^{k} with eigenvector \mathbf{v} for any positive integer k.
5.1 $\# \mathbf{2 8}$ Let $A \mathbf{v}=\lambda \mathbf{v}$ and assume that A is invertible. Then $\lambda \neq 0$ since $\operatorname{det}(A)=$ $\operatorname{det}(A-0 I) \neq 0$. Thus we have

$$
\begin{aligned}
\mathbf{v} & =A^{-1}(A \mathbf{v}) \\
& =A^{-1}(\lambda \mathbf{v}) \\
& =\lambda\left(A^{-1} \mathbf{v}\right)
\end{aligned}
$$

Thus

$$
A^{-1} \mathbf{v}=(1 / \lambda) \mathbf{v}
$$

so $1 / \lambda$ is an eigenvalue of A^{-1} with corresponding eigenvector \mathbf{v}.
5.1 \#29 The zero vector is in E_{λ}, so E_{λ} is non-empty (remember that a subspace must be non-empty). Now suppose that \mathbf{v} and \mathbf{w} are in E_{λ}. Then

$$
\begin{aligned}
A(\mathbf{v}+\mathbf{w}) & =A \mathbf{v}+A \mathbf{w} \\
& =\lambda \mathbf{v}+\lambda \mathbf{w} \\
& =\lambda(\mathbf{v}+\mathbf{w})
\end{aligned}
$$

so $\mathbf{v}+\mathbf{w}$ is in E_{λ}. For any scalar r, we have $A(r \mathbf{v})=r(A \mathbf{v})=r \lambda \mathbf{v}=\lambda(r \mathbf{v})$, so $r \mathbf{v}$ is in E_{λ}. Thus E_{λ} is a subspace of \mathbf{R}^{n}. Note that we could also just say that E_{λ} is the solution space of the homogeneous linear system $(A-\lambda I) \mathbf{v}=\mathbf{0}$, and is thus a subspace.
5.1 $\# \mathbf{3 0}$ We know that a square matrix A is invertible if and only if $\operatorname{det}(A) \neq 0$. Note that

$$
\operatorname{det}(A)=\operatorname{det}(A-0 I)
$$

so $\operatorname{det}(A) \neq 0$ if and only if 0 is not an eigenvalue of A.
5.1 \#32 Suppose that λ is an eigenvalue of A with corresponding eigenvector \mathbf{v}. Then

$$
\begin{aligned}
(A+r I) \mathbf{v} & =A \mathbf{v}+r I \mathbf{v} \\
& =\lambda \mathbf{v}+r \mathbf{v} \\
& =(\lambda+r) \mathbf{v}
\end{aligned}
$$

Thus $\lambda+r$ is an eigenvalue of $A+r I$ with corresponding eigenvector \mathbf{v}, so the eigenvalues of $A+r I$ are those of A increased by r, while the corresponding eigenvalues remain the same.
$5.1 \# 38$

$$
\begin{aligned}
p(\lambda) & =\operatorname{det}(A-\lambda I) \\
& =\operatorname{det}(A-\lambda I)(\operatorname{det}(C))^{-1}(\operatorname{det}(C)) \\
& =\operatorname{det}(A-\lambda I) \operatorname{det}\left(C^{-1}\right) \operatorname{det}(C) \\
& =\operatorname{det}\left(C^{-1}\right) \operatorname{det}(A-\lambda I) \operatorname{det}(C) \\
& =\operatorname{det}\left(C^{-1} A C-\lambda I\right)
\end{aligned}
$$

Thus A and $C^{-1} A C$ have the same characteristic polynomial, and hence the same eigenvalues.
5.1 \#39 $p(\lambda)=\operatorname{det}(A-\lambda I)=\lambda^{2}-5 \lambda+7$, so we compute

$$
A^{2}-5 A+7 I=\left[\begin{array}{cc}
2 & -1 \\
1 & 3
\end{array}\right]^{2}-5\left[\begin{array}{cc}
2 & -1 \\
1 & 3
\end{array}\right]+7\left[\begin{array}{cc}
1 & -0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]
$$

thus illustrating the Cayley-Hamilton theorem.

