Math 224
 Homework 6 Solutions

Section 4.4

$4.4 \# 2$

$$
A=\left[\begin{array}{cc}
1 & 0 \\
0 & 1 \\
1 & -1 \\
2 & 1 \\
-1 & 3
\end{array}\right]
$$

Using Maple, we compute $\sqrt{\operatorname{det} A^{T} A}=\sqrt{80}=4 \sqrt{5}$. So the volume of the 2-box in \mathbf{R}^{5} determined by the given vectors is $4 \sqrt{5}$.

$4.4 \# 8$

$$
A=\left[\begin{array}{ccc}
-1 & 3 & 4 \\
4 & -2 & 0 \\
7 & -1 & 2
\end{array}\right]
$$

Using Maple, we compute $\operatorname{det} A=20$, so the volume of the 3 -box in \mathbf{R}^{3} determined by the given vectors is 20 .
4.4 \#12 The volume of the the 3 -box determined by the vectors

$$
\begin{aligned}
& \mathbf{a}_{\mathbf{1}}=(-1,2,4)-(1,0,3)=[-2,2,1] \\
& \mathbf{a}_{\mathbf{2}}=(3,-1,2)-(1,0,3)=[2,-1,-1] \\
& \mathbf{a}_{\mathbf{3}}=(2,0,-1)-(1,0,3)=[1,0,-4]
\end{aligned}
$$

is the determinant of the matrix with the $\mathbf{a}_{\mathbf{j}}$ as column vectors. Thus we construct the matrix

$$
A=\left[\begin{array}{ccc}
-2 & 2 & 1 \\
2 & -1 & 0 \\
1 & -1 & -4
\end{array}\right]
$$

Using Maple, we compute $\operatorname{det}(A)=7$. The tetrahedron has the same altitude but base only half the area of the base of the parallelogram. Thus the volume of the tetrahedron is $(1 / 2)[(1 / 3)$ (altitude) (area of base) $]=7 / 6$.
4.4 \#14 The volume of an n-box with two edges that coincide is 0 .
4.4 \#18 The standard matrix representation of T is given by

$$
A=\left[\begin{array}{cc}
4 & -2 \\
2 & 3
\end{array}\right]
$$

Using Maple, we compute $\operatorname{det}(A)=16$. Since the area of the square in \mathbf{R}^{2} is 1 , the area of the image of the square under T is $16 \cdot 1=16$.
4.4 \#26 The standard matrix representation of T is given by

$$
A=\left[\begin{array}{ll}
0 & 1 \\
1 & 0 \\
1 & 1
\end{array}\right]
$$

Using Maple, we compute $\sqrt{\operatorname{det}\left(A^{T} A\right)}=\sqrt{3}$, and since the area of the square in \mathbf{R}^{2} is 1 , the area of the image of the square under T is $\sqrt{3} \cdot 1=\sqrt{3}$.
4.4 \#32 The standard matrix representation of T is given by

$$
A=\left[\begin{array}{cc}
1 & -1 \\
1 & 0 \\
0 & -1 \\
2 & 1
\end{array}\right]
$$

Using Maple, we compute $\sqrt{\operatorname{det}\left(A^{T} A\right)}=\sqrt{17}$, and since the area of the disk in \mathbf{R}^{2} is 9π, the area of the image of the disk under T is $\sqrt{17} \cdot 9 \pi=9 \pi \sqrt{17}$.

Section 5.1

5.1 \#45 See the Maple file fibonacci.mw posted on P:/Class/Math/Paquin/Math224. As in class, let $\mathbf{x}_{\mathbf{k}}=\left[\begin{array}{c}F_{k} \\ F_{k-1}\end{array}\right]$, and let $A=\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]$. Then

$$
\mathbf{x}_{\mathbf{k}}=A \mathbf{x}_{\mathbf{k}-\mathbf{1}}=A^{k-1} \mathbf{x}_{\mathbf{1}}
$$

where $\mathbf{x}_{\mathbf{1}}=\left[\begin{array}{l}F_{1} \\ F_{0}\end{array}\right]=\left[\begin{array}{l}1 \\ 0\end{array}\right]$.
(a) $A^{7} \mathbf{x}_{1}=\left[\begin{array}{l}21 \\ 13\end{array}\right]$, so $F_{8}=21$.
(b) $A^{2} 9 \mathbf{x}_{\mathbf{1}}=\left[\begin{array}{l}832040 \\ 514229\end{array}\right]$, so $F_{30}=832040$.
(c) $A^{49} \mathbf{x}_{1}=\left[\begin{array}{c}12586269025 \\ 7778742049\end{array}\right]$, so $F_{49}=12586269025$.
(d) $A^{76} \mathbf{x}_{1}=\left[\begin{array}{l}5527939700884757 \\ 3416454622906707\end{array}\right]$, so $F_{77}=5527939700884757$.
(e) $A^{149} \mathbf{x}_{1}=\left[\begin{array}{l}9969216677189303386214405760200 \\ 6161314747715278029583501626149\end{array}\right]$, so
$F_{150}=9969216677189303386214405760200$.
$5.1 \# 46$ (a) $a_{0}=0, a_{1}=1, a_{2}=2, a_{3}=5, a_{4}=12, a_{5}=29, a_{6}=70, a_{7}=169$, $a_{8}=408$
(b) $A=\left[\begin{array}{ll}2 & 1 \\ 1 & 0\end{array}\right]$. As in the Fibonacci sequence example in class, let $\mathbf{x}_{\mathbf{k}}=$ $\left[\begin{array}{c}a_{k} \\ a_{k-1}\end{array}\right]$. Then

$$
\mathbf{x}_{\mathbf{k}}=A \mathbf{x}_{\mathbf{k}-\mathbf{1}}=A^{k-1} \mathbf{x}_{\mathbf{1}} .
$$

(c) $A^{29} \mathbf{x}_{\mathbf{1}}=\left[\begin{array}{c}107578520350 \\ 44560482149\end{array}\right]$, so $a_{30}=107578520350$.

