Math 224 Homework 6 Solutions

Section 4.4

 $4.4 \ #2$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & -1 \\ 2 & 1 \\ -1 & 3 \end{bmatrix}$$

Using Maple, we compute $\sqrt{\det A^T A} = \sqrt{80} = 4\sqrt{5}$. So the volume of the 2-box in \mathbb{R}^5 determined by the given vectors is $\boxed{4\sqrt{5}}$.

4.4 #8

$$A = \begin{bmatrix} -1 & 3 & 4 \\ 4 & -2 & 0 \\ 7 & -1 & 2 \end{bmatrix}.$$

Using Maple, we compute det A = 20, so the volume of the 3-box in \mathbb{R}^3 determined by the given vectors is $\boxed{20}$.

4.4 #12 The volume of the 3-box determined by the vectors

$$\mathbf{a_1} = (-1, 2, 4) - (1, 0, 3) = [-2, 2, 1] \mathbf{a_2} = (3, -1, 2) - (1, 0, 3) = [2, -1, -1] \mathbf{a_3} = (2, 0, -1) - (1, 0, 3) = [1, 0, -4]$$

is the determinant of the matrix with the $\mathbf{a_j}$ as column vectors. Thus we construct the matrix

$$A = \begin{bmatrix} -2 & 2 & 1\\ 2 & -1 & 0\\ 1 & -1 & -4 \end{bmatrix}$$

Using Maple, we compute det(A) = 7. The tetrahedron has the same altitude but base only half the area of the base of the parallelogram. Thus the volume of the tetrahedron is (1/2)[(1/3)(altitude)(area of base)] = 7/6.

4.4 #14 The volume of an *n*-box with two edges that coincide is 0.

Mathematics Department

4.4 #18 The standard matrix representation of T is given by

$$A = \left[\begin{array}{cc} 4 & -2 \\ 2 & 3 \end{array} \right].$$

Using Maple, we compute det(A) = 16. Since the area of the square in \mathbb{R}^2 is 1, the area of the image of the square under T is $16 \cdot 1 = 16$.

4.4 #26 The standard matrix representation of T is given by

$$A = \left[\begin{array}{rrr} 0 & 1 \\ 1 & 0 \\ 1 & 1 \end{array} \right].$$

Using Maple, we compute $\sqrt{\det(A^T A)} = \sqrt{3}$, and since the area of the square in \mathbf{R}^2 is 1, the area of the image of the square under T is $\sqrt{3} \cdot 1 = \sqrt{3}$.

4.4 #32 The standard matrix representation of T is given by

$$A = \begin{bmatrix} 1 & -1 \\ 1 & 0 \\ 0 & -1 \\ 2 & 1 \end{bmatrix}.$$

Using Maple, we compute $\sqrt{\det(A^T A)} = \sqrt{17}$, and since the area of the disk in \mathbf{R}^2 is 9π , the area of the image of the disk under T is $\sqrt{17} \cdot 9\pi = 9\pi\sqrt{17}$.

Section 5.1

5.1 #45 See the Maple file fibonacci mw posted on P:/Class/Math/Paquin/Math224.
As in class, let
$$\mathbf{x}_{\mathbf{k}} = \begin{bmatrix} F_k \\ F_{k-1} \end{bmatrix}$$
, and let $A = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$. Then
 $\mathbf{x}_{\mathbf{k}} = A\mathbf{x}_{\mathbf{k}-1} = A^{k-1}\mathbf{x}_1$,
where $\mathbf{x}_1 = \begin{bmatrix} F_1 \\ F_0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$.
(a) $A^7\mathbf{x}_1 = \begin{bmatrix} 21 \\ 13 \end{bmatrix}$, so $\overline{F_8 = 21}$.
(b) $A^29\mathbf{x}_1 = \begin{bmatrix} 832040 \\ 514229 \end{bmatrix}$, so $\overline{F_{30} = 832040}$.
(c) $A^{49}\mathbf{x}_1 = \begin{bmatrix} 12586269025 \\ 7778742049 \end{bmatrix}$, so $\overline{F_{49} = 12586269025}$.
(d) $A^{76}\mathbf{x}_1 = \begin{bmatrix} 5527939700884757 \\ 341645622906707 \end{bmatrix}$, so $\overline{F_{77} = 5527939700884757}$.
(e) $A^{149}\mathbf{x}_1 = \begin{bmatrix} 9969216677189303386214405760200 \\ 6161314747715278029583501626149 \end{bmatrix}$, so $\overline{F_{150} = 9969216677189303386214405760200}$.
5.1 #46 (a) $a_0 = 0$, $a_1 = 1$, $a_2 = 2$, $a_3 = 5$, $a_4 = 12$, $a_5 = 29$, $a_6 = 70$, $a_7 = 169$, $a_8 = 408$
(b) $A = \begin{bmatrix} 2 & 1 \\ 1 & 0 \end{bmatrix}$. As in the Fibonacci sequence example in class, let $\mathbf{x}_{\mathbf{k}} = \begin{bmatrix} a_k \\ a_{k-1} \end{bmatrix}$. Then
 $\mathbf{x}_{\mathbf{k}} = A\mathbf{x}_{\mathbf{k}-1} = A^{k-1}\mathbf{x}_1$.
(c) $A^{29}\mathbf{x}_1 = \begin{bmatrix} 107578520350 \\ 44560482149 \end{bmatrix}$, so $\overline{a_{30} = 107578520350}$.

Mathematics Department