Math 224

Homework 4 Solutions

Section 2.2
$2.2 \# 4 \operatorname{rref}(A)=I_{4}$.
(a) $\operatorname{rank}(A)=4$ since $\operatorname{rref}(\mathrm{A})$ has 4 columns with pivots.
(b) $\{[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]\}$
(c) $\left\{\left[\begin{array}{c}3 \\ -1 \\ 2 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{c}4 \\ -1 \\ 0 \\ -1\end{array}\right],\left[\begin{array}{l}2 \\ 0 \\ 1 \\ 1\end{array}\right]\right\}$
(d) The only solution of $A \mathbf{x}=\mathbf{0}$ is $\mathbf{x}=\mathbf{0}$, so $\left\{\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right]\right\}$ is a basis for the nullspace of A.
$\mathbf{2 . 2} \# \mathbf{6} \operatorname{rref}(A)=\left[\begin{array}{cccc}1 & 0 & 0 & -1 / 2 \\ 0 & 1 & 0 & 1 / 2 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$
(a) $\operatorname{rank}(\mathrm{A})=3$
(b) $\{[1,0,0,-1 / 2],[0,1,0,1 / 2],[0,0,1,0]\}$
(c) $\left\{\left[\begin{array}{c}0 \\ -4 \\ 3 \\ -4\end{array}\right],\left[\begin{array}{l}2 \\ 4 \\ 3 \\ 0\end{array}\right],\left[\begin{array}{l}3 \\ 1 \\ 2 \\ 1\end{array}\right]\right\}$
(d) x_{4} is a free variable since the 4 th column does not contain a pivot. Set $x_{4}=r$. Then $\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]=r\left[\begin{array}{c}1 / 2 \\ -1 / 2 \\ 0 \\ 1\end{array}\right]$. So $\left\{\left[\begin{array}{c}1 / 2 \\ -1 / 2 \\ 0 \\ 1\end{array}\right]\right\}$ is a basis for the nullspace of A.
$2.2 \# 8 \operatorname{rref}(A)=I_{3}$, so $\operatorname{rank}(\mathrm{A})=3=$ number of columns of A, so A is invertible.
$\mathbf{2 . 2} \# \mathbf{1 0} \operatorname{rref}(A)=I_{4}$, so $\operatorname{rank}(\mathrm{A})=4$, so A is invertible.

Section 2.3

$2.3 \# 4 T$ is not a linear transformation since $T([0,0]) \neq[0,0,0]$.
$\mathbf{2 . 3} \# \mathbf{8}$ Reducing $\left[\begin{array}{ccc|c}1 & 0 & 0-1 & \\ 0 & 1 & -1 & 4 \\ 0 & 0 & 1 & 2\end{array}\right]$, we find that

$$
[-1,4,2]=-1 \cdot[1,0,0]+6 \cdot[0,1,0]+2 \cdot[0,-1,1]
$$

so $T([-1,4,2])=-1 \cdot T([1,0,0])+6 \cdot T([0,1,0)]+2 \cdot T([0,-1,1])=-1 \cdot[1,3]+$ $6 \cdot[4,-1]+2 \cdot[3,-5]=[31,-19]$.
$\mathbf{2 . 3} \# \mathbf{1 0}\left[\begin{array}{cc|c}-1 & 1 & x \\ 1 & 1 & y\end{array}\right] \sim\left[\begin{array}{cc|c}1 & 0 & (-x+y) / 2 \\ 0 & 1 & (x+y) / 2\end{array}\right]$. Thus

$$
[x, y]=\frac{-x+y}{2}[-1,1]+\frac{x+y}{2}[1,1] .
$$

So

$$
\begin{aligned}
T([x, y]) & =\frac{-x+y}{2} T([-1,1])+\frac{x+y}{2} T([1,1]) \\
& =\frac{-x+y}{2}[2,1,4]+\frac{x+y}{2}[-6,3,2] \\
& =[-4 x-2 y, x+2 y,-x+3 y] .
\end{aligned}
$$

$2.3 \# 16 \quad A=\left[\begin{array}{lll}2 & 1 & 1 \\ 1 & 1 & 3\end{array}\right]$
2.3 \#19 The matrix A associated with T is $A=\left[\begin{array}{cc}2 & 1 \\ 1 & 0 \\ 1 & -1\end{array}\right]$. The matrix A^{\prime} associated with T^{\prime} is $A^{\prime}=\left[\begin{array}{ccc}1 & -1 & 1 \\ 1 & 1 & 0\end{array}\right]$. Thus the matrix associated with $T^{\prime} \circ T$ is $A^{\prime} A=\left[\begin{array}{ll}2 & 0 \\ 3 & 1\end{array}\right]$. So $\left(T^{\prime} \circ T\right)\left(\left[x_{1}, x_{2}\right]\right)=\left[2 x_{1}, 3 x_{1}+x_{2}\right]$.
$\mathbf{2 . 3} \# \mathbf{2 0}$ Referring to the notation in $\# 19$, the matrix associated with $T \circ T^{\prime}$ is $A A^{\prime}=$ $\left[\begin{array}{lll}3 & -1 & 2 \\ 1 & -1 & 1 \\ 0 & -2 & 1\end{array}\right]$. So $\left(T \circ T^{\prime}\right)\left(\left[x_{1}, x_{2}, x_{3}\right]\right)=\left[3 x_{1}-x_{2}+2 x_{3}, x_{1}-x_{2}+x_{3},-2 x_{2}+x_{3}\right]$.
2.3 \#24 No, because A is not a square matrix, so it cannot be invertible.
$2.3 \# 30 T^{-1}\left(T\left(\left[x_{1}, x_{2}, x_{3}\right]\right)\right)=$
$\left[\left(x_{1}-2 x_{2}+x_{3}\right)+4\left(x_{2}-x_{3}\right)-2\left(x_{2}-3 x_{3}\right), 3\left(x_{2}-x_{3}\right)-2\left(x_{2}-3 x_{3}\right), 2\left(x_{2}-x_{3}\right)-\right.$ $\left.\left(2 x_{2}-3 x_{3}\right)\right]$ $=\left[x_{1}, x_{2}, x_{3}\right]$.

