Math 224
 Homework 3 Solutions

Section 1.6

1.6 \#4: Let $S=\{[x, y] \mid x, y \geq 0\}$. Since $[1,1]$ is in S, but $-1 \cdot[1,1]=[-1,1]$ is not in S, we see that S is not closed under scalar multiplication, so S is not a subspace of \mathbf{R}^{2}.
1.6 \#8: Let $S=\{[2 x, x+y, y]\}$. Let $\mathbf{v}=[2 a, a+b, b]$ and $\mathbf{w}=[2 c, c+d, d]$ be two vectors in S. Then $\mathbf{v}+\mathbf{w}=[2 a+2 c, a+b+c+d, b+d]=[2(a+c),(a+c)+(b+d), b+d]$, which does have the form $[2 x, x+y, y]$. Also, $r \mathbf{v}=r[2 a, a+b, b]=[2 r a, r a+r b, r b]$ is in S. Thus we conclude that S is a subspace of \mathbf{R}^{3}.
1.6\#10: $S=\left\{\left[x_{1}, 0, x_{3}, \ldots, x_{n}\right]\right\}$ is a subspace of \mathbf{R}^{3} since S is closed under addition and scalar multiplication.
1.6\#12: The plane $a x+b y+c z=0$ can be viewed as the solution set of a homogeneous linear system consisting of a single equation. Thus, by Theorem 1.13, the plane $a x+b y+c z=0$ is a subspace of \mathbf{R}^{3}.

1.6\#18: The augmented matrix $[A \mid \mathbf{0}]=\left[\begin{array}{cccc|c}1 & -1 & 1 & -1 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 1 & 2 & -1 & 3 & 0\end{array}\right]$. Row reducing in Maple, we obtain $[A \mid \mathbf{0}]=$\begin{tabular}{cccc|c}
1 \& 0 \& 0 \& $3 / 5$ \& 0

0 \& 1 \& 0 \& $4 / 5$ \& 0

0 \& 0 \& 1 \& $-4 / 5$ \& 0

 . The last column does not con

0 \& 0 \& 1 \& $-4 / 5$ \& 0
\end{tabular}

tain a pivot, so x_{4} is a free variable. Set $x_{4}=r$. This implies $\mathbf{x}=r\left[\begin{array}{c}-3 / 5 \\ -4 / 5 \\ 4 / 5 \\ 1\end{array}\right]$. Thus $\{[-3 / 5,-4 / 5,4 / 5,1]\}$ is a basis for the solution set.
1.6\#26: The matrix $\left[\begin{array}{cccc}2 & 2 & 3 & 5 \\ 1 & -3 & 2 & 0 \\ 0 & 1 & 0 & 0 \\ 2 & 0 & 0 & 0\end{array}\right]$ is row equivalent to the identity, so it is invertible, so the set of vectors is a basis for the subspace of \mathbf{R}^{4} that the vectors span.
1.6 $\# 3$ 32: We row reduce the augmented matrix $[A \mid 0]$ to $\left[\begin{array}{cccc|c}1 & 0 & 2 & 1 & 0 \\ 0 & 1 & 1 & 2 & 0 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$. Thus x_{3} and
x_{4} are free variables, and the solution space is given by $\left[\begin{array}{c}-2 s-r \\ -s-2 r \\ s \\ r\end{array}\right]$. Thus $\{[-2,-1,1,0],[-1,-2,0,1]\}$ is a basis for the nullspace.

Section 2.1

2.1 \#2: If two of the vectors are dependent, then we don't have anything to prove. If two of the vectors are independent, then they span all of \mathbf{R}^{2}, so the third vector must be a linear combination of the first two, so the three vectors must be dependent.
2.1 \#4: An independent set of two vectors in \mathbf{R}^{3} spans a plane.
2.1 \#10: We row reduce the matrix $A=\left[\begin{array}{cccc}-2 & 3 & 1 & -1 \\ 3 & -1 & 2 & 5 \\ 1 & 2 & 3 & 4\end{array}\right]$ to obtain $\operatorname{rref}(A)=$ $\left[\begin{array}{cccc}1 & 0 & 1 & 2 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0\end{array}\right]$. The first and second columns contain a pivot, so
$\{[-2,3,1],[3,-1,2]\}$ is a basis.
2.1 \#12: $\operatorname{rref}(A)=\left[\begin{array}{ccc}1 & 0 & 1 / 11 \\ 0 & 1 & 3 / 11 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$. The first and second columns contain a pivot, so $\{[2,5,1,6],[3,2,7,-2]\}$ is a basis.
2.1 \#22: We row reduce the matrix $A=\left[\begin{array}{ccc}1 & 2 & 4 \\ -4 & -11 & -3 \\ 3 & 2 & -4\end{array}\right]$ to obtain $\operatorname{rref}(A)=I$, the 3×3 identity matrix, so the given set of vectors is independent.
2.1 \#26: First, we form the matrix $A=\left[\begin{array}{cccc}1 & 1 & 0 & 0 \\ 2 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1\end{array}\right]$. Row reducing, we obtain
$\operatorname{rref}(A)=\left[\begin{array}{cccc}1 & 0 & 0 & 1 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & -2\end{array}\right]$. The first, second, and third columns contain
pivots, so a basis for \mathbf{R}^{3} is $\{[1,2,1],[1,0,0],[0,1,0]\}$.
$\mathbf{2 . 1} \# \mathbf{3 2}$: We row reduce the matrix $A=\left[\begin{array}{lll}1 & 2 & 2 \\ 0 & s & 3 \\ 1 & 3 & 1\end{array}\right]$ to obtain $\operatorname{rref}(A)=\left[\begin{array}{ccc}1 & 2 & 2 \\ 0 & 1 & -1 \\ 0 & 0 & 3+s\end{array}\right]$.
We see that the third column will not have a pivot if $s=-3$, so the vectors are independent for all scalars $s \neq-3$.

