Math 224 Homework 2 Solutions

Section 1.4

$$\mathbf{1.4} \ \#\mathbf{6}(\mathbf{a}): \begin{bmatrix} 0 & 0 & 1 & 2 & -1 & 4 \\ 0 & 0 & 0 & 1 & -1 & 3 \\ 2 & 4 & -1 & 3 & 2 & -1 \end{bmatrix} \sim \begin{bmatrix} 2 & 4 & -1 & 3 & 2 & -1 \\ 0 & 0 & 1 & 2 & -1 & 4 \\ 0 & 0 & 0 & 1 & -1 & 3 \end{bmatrix}$$
$$\mathbf{1.4} \ \#\mathbf{6}(\mathbf{b}): \operatorname{rref}(A) = \begin{bmatrix} 1 & 2 & 0 & 0 & 3 & -6 \\ 0 & 0 & 1 & 0 & 1 & -2 \\ 0 & 0 & 0 & 1 & -1 & 3 \end{bmatrix}$$

1.4#14: First we form the augmented matrix $[A|\mathbf{b}] = \begin{bmatrix} 4 & -3 & 10 \\ 8 & -1 & 10 \end{bmatrix}$. Row reducing, we obtain $[A|\mathbf{b}] \sim \begin{bmatrix} 4 & -3 & 10 \\ 0 & 5 & -10 \end{bmatrix}$. The bottom row implies $5x_2 = -10$, so we conclude $x_2 = -2$. Back-substituting into the first row, we obtain $4x_1 - 3 \cdot -2 = 10$, so we conclude $x_1 = 1$.

1.4#18: First we form the augmented matrix $[A|\mathbf{b}] = \begin{bmatrix} 1 & -3 & 1 & | & 2 \\ 3 & -8 & 2 & | & 5 \end{bmatrix}$. Row reducing, we obtain $[A|\mathbf{b}] \sim \begin{bmatrix} 1 & -3 & 1 & | & 2 \\ 0 & 1 & -1 & | & -1 \end{bmatrix}$. The third column does not contain a pivot, so x_3 is a free variable, and we can assign any value, say s, to x_3 . Next we back substitute to obtain x_1 and x_2 in terms of s. The second row implies $x_2 - x_3 = -1$, so $x_2 = -1 + s$. The first row implies $x_1 - 3x_2 + x_3 = 2$, so $x_1 = 2 + 3(-1+s) - s = -1 + 2s$. So we conclude: $\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -1 + 2s \\ -1 + s \\ s \end{bmatrix}$.

1.4#22: The augmented matrix $[A|\mathbf{b}] = \begin{bmatrix} 2 & 8 & | & 16 \\ 5 & -4 & | & -8 \end{bmatrix}$. Row reducing in Maple to reduced row-echelon form, we obtain $[A|\mathbf{b}] \sim \begin{bmatrix} 1 & 0 & | & 0 \\ 0 & 1 & | & 2 \end{bmatrix}$. So we conclude $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 2 \end{bmatrix}$.

1.4#24: The augmented matrix $[A|\mathbf{b}] = \begin{bmatrix} 1 & 2 & -3 & 1 & | & 2 \\ 3 & 6 & -8 & -2 & | & 1 \end{bmatrix}$. Row reducing in Maple to reduced row-echelon form, we obtain $[A|\mathbf{b}] \sim \begin{bmatrix} 1 & 2 & 0 & -14 \\ 0 & 0 & 1 & -5 & | & -5 \end{bmatrix}$. The

Mathematics Department

second and fourth columns do not contain pivots, so x_2 and x_4 are free variables.

Set
$$x_2 = r$$
 and $x_4 = s$. Then we obtain:
$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} -13 - 2r + 14s \\ r \\ -5 + 5s \\ s \end{bmatrix}$$

1.4#28: First we form the augmented matrix consisting of the column vectors v_i : $[A|\mathbf{b}] = \begin{bmatrix} 1 & -3 & 1 & 2 & | & 2 \\ 1 & -2 & 2 & 4 & | & -1 \\ 2 & -8 & -1 & 0 & | & 3 \\ 3 & -9 & 4 & 0 & | & 7 \end{bmatrix}$. Row reducing in Maple to reduced row-echelon form, we obtain $[A|\mathbf{b}] \sim \begin{bmatrix} 1 & 0 & 0 & 0 & | & -43 \\ 0 & 1 & 0 & 0 & | & -12 \\ 0 & 0 & 1 & 0 & | & 7 \\ 0 & 0 & 0 & 1 & | & 1 \end{bmatrix}$. Thus the linear system $A\mathbf{x} = \mathbf{b}$ is consistent, so the vector \mathbf{b} is in the span of the column vectors of A, so \mathbf{b} is in the span of the vectors v_i .

1.4#34: The augmented matrix $[A|\mathbf{b}] = \begin{bmatrix} 1 & -5 & | & 13 \\ 3 & 2 & | & 5 \end{bmatrix}$. Row reducing in Maple to reduced row-echelon form, we obtain $[A|\mathbf{b}] \sim \begin{bmatrix} 1 & 0 & | & 3 \\ 0 & 1 & | & -2 \end{bmatrix}$. Thus we conclude $\begin{bmatrix} x_1 \\ x_1 \end{bmatrix} = \begin{bmatrix} 3 \\ -3 \end{bmatrix}$

	$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$] =	=	-2] .	
~						

1.4#42: Since the matrix on the right is obtained by replacing R3 with $-3 \cdot R1 + R3$,

$$E = \begin{bmatrix} 0 & 1 & 0 \\ -3 & 0 & 1 \end{bmatrix}.$$

1.4#44:
$$C = \begin{bmatrix} 1 & 0 & 0 \\ -3 & 1 & 0 \\ -4 & 0 & 1 \end{bmatrix}.$$

1.4#46:
$$C = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

1.4#56: We need to solve the system of equations:

$$a+b+c = -4$$
$$a-b+c = 0$$
$$4a+2b+c = 3$$

So we form the augmented matrix
$$[A|\mathbf{b}] = \begin{bmatrix} 1 & 1 & 1 & | & -4 \\ 1 & -1 & 1 & | & 0 \\ 4 & 2 & 1 & | & 3 \end{bmatrix}$$
. Row reducing in
Maple to reduced row-echelon form, we obtain $[A|\mathbf{b}] \sim \begin{bmatrix} 1 & 0 & 0 & | & 3 \\ 0 & 1 & 0 & | & -2 \\ 0 & 0 & 1 & | & -5 \end{bmatrix}$. Thus
we conclude $a = 3, b = -2$, and $c = 5$, so the parabola is $y = 3x^2 - 2x - 5$.

Section 1.5

$$1.5\#8(\mathbf{a}): A^{-1} = \begin{bmatrix} -36 & -24 & 13\\ -19 & -13 & 7\\ 3 & 2 & -1 \end{bmatrix}$$
$$1.5\#14: A^{-1} = \begin{bmatrix} =7 & 5 & 3\\ 3 & -2 & 2\\ 3 & -2 & 1 \end{bmatrix} \cdot A^{-1} \cdot \mathbf{b} = \begin{bmatrix} =7 & 5 & 3\\ 3 & -2 & 2\\ 3 & -2 & 1 \end{bmatrix} \cdot \begin{bmatrix} 5\\ 3\\ 8 \end{bmatrix} = \begin{bmatrix} 4\\ -7\\ 1 \end{bmatrix}.$$
 Thus we conclude
$$\begin{bmatrix} x_1\\ x_2\\ x_3 \end{bmatrix} = \begin{bmatrix} 4\\ -7\\ 1 \end{bmatrix}.$$

- **1.5#18**: Since 2A = 2(IA) = A(2I), we see that we can take B = 2I, where I is the 3×3 identity matrix.
- **1.5#26**: Since A^2 is invertible, we can let B be a matrix such that $A^2B = BA^2 = I$. Then A(AB) = (BA)A = I, so A is invertible and $A^{-1} = AB = BA = I$.
- **1.5#30(a)**: One example of such a matrix is $\begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}$.
- 1.5#30(b): Suppose that A is a matrix that is both idempotent and invertible. Let A^{-1} denote the inverse of A. Then since A is idempotent, $A^2 = A$. Since A is invertible, we can multiply on the left by A^{-1} to obtain $A^{-1}AA = A^{-1}A$, which implies IA = I, so A = I.

Mathematics Department

Kenyon College

$$1.5 \# 35(\mathbf{a}) \colon \begin{bmatrix} a & b \\ c & d \end{bmatrix} \cdot \begin{bmatrix} \frac{d}{ad-bc} & \frac{-b}{ad-bc} \\ \frac{-c}{ad-bc} & \frac{a}{ad-bc} \end{bmatrix} = \begin{bmatrix} \frac{ad-bc}{ad-bc} & 0 \\ 0 & \frac{ad-bc}{ad-bc} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Similarly,
$$\begin{bmatrix} \frac{d}{ad-bc} & \frac{-b}{ad-bc} \\ \frac{-c}{ad-bc} & \frac{a}{ad-bc} \end{bmatrix} \cdot \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
. So if $ad-bc \neq 0$,
$$\begin{bmatrix} \frac{d}{ad-bc} & \frac{-b}{ad-bc} \\ \frac{-c}{ad-bc} & \frac{a}{ad-bc} \end{bmatrix}$$

is the inverse of
$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
.