Math 224

Homework 2 Solutions

Section 1.4

$\left.\mathbf{1 . 4} \boldsymbol{\#} \mathbf{6 (a)} \mathbf{(}: \begin{array}{cccccc}0 & 0 & 1 & 2 & -1 & 4 \\ 0 & 0 & 0 & 1 & -1 & 3 \\ 2 & 4 & -1 & 3 & 2 & -1\end{array}\right] \sim\left[\begin{array}{cccccc}2 & 4 & -1 & 3 & 2 & -1 \\ 0 & 0 & 1 & 2 & -1 & 4 \\ 0 & 0 & 0 & 1 & -1 & 3\end{array}\right]$
$\mathbf{1 . 4} \# \mathbf{6}(\mathbf{b}): \operatorname{rref}(A)=\left[\begin{array}{cccccc}1 & 2 & 0 & 0 & 3 & -6 \\ 0 & 0 & 1 & 0 & 1 & -2 \\ 0 & 0 & 0 & 1 & -1 & 3\end{array}\right]$
1.4\#14: First we form the augmented matrix $[A \mid \mathbf{b}]=\left[\begin{array}{ll|l}4 & -3 & 10 \\ 8 & -1 & 10\end{array}\right]$. Row reducing, we obtain $[A \mid \mathbf{b}] \sim\left[\begin{array}{cc|c}4 & -3 & 10 \\ 0 & 5 & -10\end{array}\right]$. The bottom row implies $5 x_{2}=-10$, so we conclude $x_{2}=-2$. Back-substituting into the first row, we obtain $4 x_{1}-3 \cdot-2=$ 10, so we conclude $x_{1}=1$.
1.4\#18: First we form the augmented matrix $[A \mid \mathbf{b}]=\left[\begin{array}{lll|l}1 & -3 & 1 & 2 \\ 3 & -8 & 2 & 5\end{array}\right]$. Row reducing, we obtain $[A \mid \mathbf{b}] \sim\left[\begin{array}{ccc|c}1 & -3 & 1 & 2 \\ 0 & 1 & -1 & -1\end{array}\right]$. The third column does not contain a pivot, so x_{3} is a free variable, and we can assign any value, say s, to x_{3}. Next we back substitute to obtain x_{1} and x_{2} in terms of s. The second row implies $x_{2}-x_{3}=-1$, so $x_{2}=-1+s$. The first row implies $x_{1}-3 x_{2}+x_{3}=2$, so $x_{1}=2+3(-1+s)-s=-1+2 s$. So we conclude: $\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{c}-1+2 s \\ -1+s \\ s\end{array}\right]$.
1.4\#22: The augmented matrix $[A \mid \mathbf{b}]=\left[\begin{array}{cc|c}2 & 8 & 16 \\ 5 & -4 & -8\end{array}\right]$. Row reducing in Maple to reduced row-echelon form, we obtain $[A \mid \mathbf{b}] \sim\left[\begin{array}{ll|l}1 & 0 & 0 \\ 0 & 1 & 2\end{array}\right]$. So we conclude $\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{l}0 \\ 2\end{array}\right]$.
1.4\#24: The augmented matrix $[A \mid \mathbf{b}]=\left[\begin{array}{cccc|c}1 & 2 & -3 & 1 & 2 \\ 3 & 6 & -8 & -2 & 1\end{array}\right]$. Row reducing in Maple to reduced row-echelon form, we obtain $[A \mid \mathbf{b}] \sim\left[\begin{array}{cccc|c}1 & 2 & 0 & -14 & \\ 0 & 0 & 1 & -5 & -5\end{array}\right]$. The
second and fourth columns do not contain pivots, so x_{2} and x_{4} are free variables.
Set $x_{2}=r$ and $x_{4}=s$. Then we obtain: $\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]=\left[\begin{array}{c}-13-2 r+14 s \\ r \\ -5+5 s \\ s\end{array}\right]$.
1.4\#28: First we form the augmented matrix consisting of the column vectors $v_{i}:[A \mid \mathbf{b}]=$ $\left[\begin{array}{cccc|c}1 & -3 & 1 & 2 & 2 \\ 1 & -2 & 2 & 4 & -1 \\ 2 & -8 & -1 & 0 & 3 \\ 3 & -9 & 4 & 0 & 7\end{array}\right]$. Row reducing in Maple to reduced row-echelon form, we obtain $[A \mid \mathbf{b}] \sim\left[\begin{array}{cccc|c}1 & 0 & 0 & 0 & -43 \\ 0 & 1 & 0 & 0 & -12 \\ 0 & 0 & 1 & 0 & 7 \\ 0 & 0 & 0 & 1 & 1\end{array}\right]$. Thus the linear system $A \mathbf{x}=\mathbf{b}$ is consistent, so the vector \mathbf{b} is in the span of the column vectors of A, so \mathbf{b} is in the span of the vectors v_{i}.
1.4\#34: The augmented matrix $[A \mid \mathbf{b}]=\left[\begin{array}{cc|c}1 & -5 & 13 \\ 3 & 2 & 5\end{array}\right]$. Row reducing in Maple to reduced row-echelon form, we obtain $[A \mid \mathbf{b}] \sim\left[\begin{array}{cc|c}1 & 0 & 3 \\ 0 & 1 & -2\end{array}\right]$. Thus we conclude $\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{c}3 \\ -2\end{array}\right]$.
1.4\#42: Since the matrix on the right is obtained by replacing $R 3$ with $-3 \cdot R 1+R 3$, $E=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ -3 & 0 & 1\end{array}\right]$.
1.4\#44: $C=\left[\begin{array}{ccc}1 & 0 & 0 \\ -3 & 1 & 0 \\ -4 & 0 & 1\end{array}\right]$.
1.4\#46: $C=\left[\begin{array}{llll}0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$.
1.4\#56: We need to solve the system of equations:

$$
\begin{aligned}
a+b+c & =-4 \\
a-b+c & =0 \\
4 a+2 b+c & =3
\end{aligned}
$$

So we form the augmented matrix $[A \mid \mathbf{b}]=\left[\begin{array}{ccc|c}1 & 1 & 1 & -4 \\ 1 & -1 & 1 & 0 \\ 4 & 2 & 1 & 3\end{array}\right]$. Row reducing in Maple to reduced row-echelon form, we obtain $[A \mid \mathbf{b}] \sim\left[\begin{array}{ccc|c}1 & 0 & 0 & 3 \\ 0 & 1 & 0 & -2 \\ 0 & 0 & 1 & -5\end{array}\right]$. Thus we conclude $a=3, b=-2$, and $c=5$, so the parabola is $y=3 x^{2}-2 x-5$.

Section 1.5

$\mathbf{1 . 5 \# 8 (a)}: A^{-1}=\left[\begin{array}{ccc}-36 & -24 & 13 \\ -19 & -13 & 7 \\ 3 & 2 & -1\end{array}\right]$
1.5\#14: $A^{-1}=\left[\begin{array}{ccc}=7 & 5 & 3 \\ 3 & -2 & 2 \\ 3 & -2 & 1\end{array}\right] . A^{-1} \cdot \mathbf{b}=\left[\begin{array}{ccc}=7 & 5 & 3 \\ 3 & -2 & 2 \\ 3 & -2 & 1\end{array}\right] \cdot\left[\begin{array}{l}5 \\ 3 \\ 8\end{array}\right]=\left[\begin{array}{c}4 \\ -7 \\ 1\end{array}\right]$. Thus we conclude $\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{c}4 \\ -7 \\ 1\end{array}\right]$.
1.5\#18: Since $2 A=2(I A)=A(2 I)$, we see that we can take $B=2 I$, where I is the 3×3 identity matrix.
1.5\#26: Since A^{2} is invertible, we can let B be a matrix such that $A^{2} B=B A^{2}=I$. Then $A(A B)=(B A) A=I$, so A is invertible and $A^{-1}=A B=B A=I$.
$\mathbf{1 . 5 \# 3 0 (a)}$: One example of such a matrix is $\left[\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}\right]$.
$\mathbf{1 . 5 \# 3 0} \mathbf{(b)}$: Suppose that A is a matrix that is both idempotent and invertible. Let A^{-1} denote the inverse of A. Then since A is idempotent, $A^{2}=A$. Since A is invertible, we can multiply on the left by A^{-1} to obtain $A^{-1} A A=A^{-1} A$, which implies $I A=I$, so $A=I$.
1.5\#35(a): $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \cdot\left[\begin{array}{cc}\frac{d}{a d-b c} & \frac{-b}{a d-b c} \\ \frac{-c}{a d-b c} & \frac{a}{a d-b c}\end{array}\right]=\left[\begin{array}{cc}\frac{a d-b c}{a d-b c} & 0 \\ 0 & \frac{a d-b c}{a d-b c}\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$

Similarly, $\left[\begin{array}{cc}\frac{d}{a d-b c} & \frac{-b}{a d-b c} \\ \frac{-c}{a d-b c} & \frac{a}{a d-b c}\end{array}\right] \cdot\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$. So if $a d-b c \neq 0,\left[\begin{array}{cc}\frac{d}{a d-b c} & \frac{-b}{a d-b c} \\ \frac{-c}{a d-b c} & \frac{a}{a d-b c}\end{array}\right]$ is the inverse of $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$.

