Math 224

Homework 1 Solutions

Section 1.1

$1.1 \# 8: 4(3 \mathbf{u}+2 \mathbf{v}-5 \mathbf{w})=4([-3,9,-6]+[8,0,-2]-[15,-5,10])=[80,56,-72]$
1.1 \#26: All $c \in \mathbb{R}$. Since $[-3,5]$ and $[6,11]$ are not parallel, every vector $[-1, c]$ forms the diagonal of a parallelogram with adjacent sides formed by vectors parallel to $[-3,5]$ and to $[6,-11]$.
1.1 \#28: If $[1, c, c-1]=r[1,2,1]+s[3,6,3]$, then $1=r+3 s, c=2 r+6 s=2(r+3 s)$, and $c-1=r+3 s$ (by equating the components of the vectors on the left and right of the equation). The first and second equations yield $c=2$, which does satisfy the third equation since $r+3 s=1$. Thus $c=2$.
1.1 $\# 36: x_{1}\left[\begin{array}{l}1 \\ 3\end{array}\right]+x_{2}\left[\begin{array}{c}-3 \\ 0\end{array}\right]+x_{3}\left[\begin{array}{c}2 \\ -4\end{array}\right]+x_{4}\left[\begin{array}{l}0 \\ 5\end{array}\right]=\left[\begin{array}{c}-6 \\ 12\end{array}\right]$

Section 1.2

$1.2 \# \mathbf{4 :}\|\mathbf{v}-2 \mathbf{u}\|=\|[2,1,-1]-[-2,6,8]\|=\|[4,-5,-9]\|$
$=\sqrt{(4)^{2}+(-5)^{2}+(-9)^{2}}=\sqrt{122}$.
$1.2 \# 8:\|\mathrm{w}\|=\sqrt{14}$.
$\frac{-1}{\|\mathbf{w}\|} \mathbf{w}=\frac{-1}{\sqrt{14}}[-2,1,3]=\left[\frac{2}{\sqrt{14}}, \frac{1}{\sqrt{14}}, \frac{-3}{\sqrt{14}}\right]$.
1.2 \#30: $[4,1,2,1,6] \cdot[8,2,4,2,3]>0$, so the vectors are not perpendicular. To check if the vectors are parallel, we must check if one is a constant multiple of the other. If $r[4,1,2,1,6]=[8,2,4,2,3]$, then $4 r=8$, so $r=2$ (equating the first components). But equating the last components yields $6 r=3$, so $r=1 / 2$. Since $2 \neq 1 / 2$, the vectors are not parallel.
1.2 \#44: We know that \mathbf{w} is perpendicular to both \mathbf{u} and \mathbf{v}, so $\mathbf{w} \cdot \mathbf{u}=0$ and $\mathbf{w} \cdot \mathbf{v}=0$. Thus:

$$
\begin{gathered}
\mathbf{w} \cdot(r \mathbf{u}+s \mathbf{v})=\mathbf{w} \cdot(r \mathbf{u})+\mathbf{w} \cdot(s \mathbf{v}) \\
=r(\mathbf{w} \cdot \mathbf{u})+s(\mathbf{w} \cdot \mathbf{v}) \\
=r(0)+s(0) \\
=0
\end{gathered}
$$

Thus \mathbf{w} is perpendicular to $r \mathbf{u}+s \mathbf{v}$.

Section 1.3

1.3 \#8: Not possible since C is a 3×2 matrix and D is a 3×2 matrix.
1.3\#12: $A C=\left[\begin{array}{cc}-13 & 14 \\ 11 & -6\end{array}\right]$ and $(A C)^{2}=\left[\begin{array}{cc}323 & -266 \\ -209 & 190\end{array}\right]$.
$\mathbf{1 . 3} \mathbf{\# 2 0}:\left[\begin{array}{cccc}1 & -1 & 2 & 5 \\ -1 & 4 & -7 & 8 \\ 2 & -7 & -1 & 6 \\ 5 & 8 & 6 & 3\end{array}\right]$
1.3 \#30: If $A=\left[a_{i j}\right]$ is an $m \times n$ matrix, then A^{T} is the $n \times m$ matrix whose (i, j)-th entry is $a_{j i}$ and $\left(A^{T}\right)^{T}$ is the $m \times n$ matrix whose (i, j) entry is again $a_{i j}$. Thus $\left(A^{T}\right)^{T}=A$.
1.3 \#32: The (i, j)-th entry of $(A B)^{T}$ is the (j, i)-th entry in $A B$, which is

$$
(j \text {-th row of } A) \cdot(i \text { th column of } B)
$$

$=(i$-th column of $B) \cdot(j$-th row of $A)$
$=\left(i\right.$-th row of $\left.A^{T}\right) \cdot\left(j\right.$-th column of $\left.A^{T}\right)$,
which is the (i, j)-th entry of $B^{T} A^{T}$. Since $(A B)^{T}$ and $B^{T} A^{T}$ have the same size and the same entries, they are equal.
$1.3 \# 38$: Since $\left(A+A^{T}\right)^{T}=A^{T}+\left(A^{T}\right)^{T}=A^{T}+A=A+A^{T}$, we see that $A+A^{T}$ is symmetric.
$1.3 \# 40(\mathbf{a}):\left(A^{2}\right)^{T}=(A A)^{T}=A^{T} A^{T}=\left(A^{T}\right)^{2}$ and $\left(A A^{3}\right)^{T}=\left(A A^{2}\right)^{T}=\left(A^{2}\right)^{T} A^{T}=$ $\left(A^{T}\right)^{2} A^{T}=\left(A^{T}\right)^{3}$.
$1.3 \# 42:(A+B)^{2}=(A+B)(A+B)=A^{2}+A B+B A+B^{2}$, so $(A+B)^{2}=A^{2}+2 A B+B^{2}$ if and only if $A B=B A$. Since we know that matrix multiplication is, in general, not commutative, we conclude that $(A+B)^{2} \neq A^{2}+2 A B+B^{2}$ in general. In particular, let $A=\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right]$ and $B=\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right]$. Then $(A+B)^{2}=\left[\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right]$ and $A^{2}+2 A B+B^{2}=\left[\begin{array}{ll}3 & 1 \\ 0 & 0\end{array}\right]$. The equation $(A+B)^{2}=A^{2}+2 A B+B^{2}$ for square matrices A and B is true if and only if A and B commute.
$1.3 \# 46:\left[\begin{array}{lll}2 & 0 & 0 \\ 0 & r & 0 \\ 0 & 0 & 2\end{array}\right]\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1\end{array}\right]=\left[\begin{array}{lll}2 & 0 & 2 \\ 0 & r & 0 \\ 2 & 0 & 2\end{array}\right]$ $\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1\end{array}\right]\left[\begin{array}{lll}2 & 0 & 0 \\ 0 & r & 0 \\ 0 & 0 & 2\end{array}\right]=\left[\begin{array}{lll}2 & 0 & 2 \\ 0 & r & 0 \\ 2 & 0 & 2\end{array}\right]$

These products are equal for all values of r.

Section 1.4

$\mathbf{1 . 4 \# 2 (a) :}\left[\begin{array}{ccc}2 & 4 & -2 \\ 4 & 8 & 3 \\ -1 & -3 & 0\end{array}\right] \sim\left[\begin{array}{ccc}1 & 2 & -1 \\ 0 & 0 & 7 \\ 0 & -1 & -1\end{array}\right] \sim\left[\begin{array}{ccc}1 & 2 & -1 \\ 0 & -1 & -1 \\ 0 & 0 & 7\end{array}\right]$
Note: answers are not unique.
$\mathbf{1 . 4 \# 4 (a) :}\left[\begin{array}{cccc}0 & 0 & 3 & -2 \\ 0 & 0 & 1 & 2 \\ 1 & 3 & 2 & -4\end{array}\right] \sim\left[\begin{array}{cccc}1 & 3 & 2 & -4 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & -8\end{array}\right]$
Note: answers are not unique.
1.4 \#14: First, we form the augmented matrix $\left[\begin{array}{ll|l}4 & -3 & 10 \\ 8 & -1 & 10\end{array}\right]$. Row reducing, we obtain the row-reduced matrix $\left[\begin{array}{cc|c}4 & -3 & 10 \\ 0 & 5 & 10\end{array}\right]$. Thus we obtain $5 x_{2}=-10$ and $4 x_{1}-$ $3 x_{2}=10$. Thus the solution of the linear system is $\left[\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{c}1 \\ -2\end{array}\right]\right.$.

