Math 224

Homework 12 Solutions

Section 3.4

$3.4 \# 22:(a)$

$$
A=\left[\begin{array}{llll}
3 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

(b) Let $p(x)=a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}$. Using coordinate vectors relative to B, the equation $T(p(x))=x^{3}-3 x^{2}+4 x$ becomes

$$
\left[\begin{array}{llll|l}
3 & 0 & 0 & 0 & a_{1} \\
0 & 2 & 0 & 0 & a_{2} \\
0 & 0 & 1 & 0 & a_{1} \\
0 & 0 & 0 & 0 & a_{0}
\end{array}\right]=\left[\begin{array}{r}
1 \\
-3 \\
4 \\
0
\end{array}\right] .
$$

The solution is

$$
a_{1}=1 / 3, a_{2}=-3 / 2, a_{3}=4, a_{4}=c,
$$

where c is any scalar. Thus

$$
p(x)=\frac{1}{3} x^{3}-\frac{3}{2} x^{2}+4 x+c
$$

where c is any scalar.
(c) The matrix representation A_{1} of T_{1} relative to $B, B^{\prime \prime}$ is

$$
A_{1}=\left[\begin{array}{llll}
3 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

The matrix representation A_{2} of T_{2} relative to $B^{\prime \prime}, B$ is

$$
A_{2}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]
$$

Then

$$
A_{2} A_{1}=\left[\begin{array}{cccc}
3 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]=A
$$

(d)

$$
A_{1} A_{2}=\left[\begin{array}{lll}
3 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Thus $T_{3}\left(a_{2} x^{2}+a_{1} x+a_{0}\right)=3 a_{2} x^{2}+2 a_{1} x+a_{0}$, so $T_{3}=T_{1} \circ T_{2}$.
$3.4 \# 24:(\mathrm{a})$

$$
A=\left[\begin{array}{cccc}
24 & 0 & 0 & 0 \\
24 & 8 & 0 & 0 \\
6 & 4 & 2 & 0
\end{array}\right]
$$

(b) $T\left(4 x^{3}-5 x^{2}+4 x-7\right)=96 x^{2}+56 x+12$.
$3.4 \# 27:$

$$
A=\left[\begin{array}{ccc}
9 & 0 & 0 \\
0 & 25 & 0 \\
0 & 0 & 81
\end{array}\right]
$$

$3.4 \# 31$:

$$
A=\left[\begin{array}{cc}
-3 & -3 \\
4 & -4
\end{array}\right]
$$

3.4 \#32: $T(a \sin 2 x+b \cos 2 x)=-2 b \sin 2 x+2 a \cos 2 x$.

