Math 224
 Homework 11 Solutions

Section 3.2

3.2 \#2: The set is NOT a subspace of P since it is not closed under vector addition. For example, $p(x)=x^{4}+x^{3}$ and $q(x)=-x^{4}$ are both in the set, but $p(x)+q(x)=x^{3}$ is not in the set.
3.2 $\# \mathbf{3}$: The set is NOT a subspace of F since it is not closed under vector addition. If $f(0)=g(0)=1$, then $(f+g)(0)=f(0)+g(0)=1+1=2$.
3.2 \#4: W is a subspace of F. You should verify that W is non-empty, closed under vector addition, and closed under scalar multiplication.
3.2 \#5: S is a subspace of W. You should verify that S is non-empty, closed under vector addition, and closed under scalar multiplication.
$3.2 \# 8$: Note that

$$
1=1(1+2 x)+(-2) x
$$

and

$$
x=0(1+2 x)+1(x),
$$

so $\operatorname{sp}(1, x)$ is contained in $\operatorname{sp}(1+2 x, x)$. Next,

$$
1+2 x=1(1)+2(x)
$$

and

$$
x=0(1)+1(x),
$$

so $\operatorname{sp}(1+2 x, x)$ is contained in $\operatorname{sp}(1, x)$. Thus we conclude that

$$
\mathrm{sp}(1, x)=\operatorname{sp}(1+2 x, x)
$$

3.2 \#12: The set of vectors is dependent. Suppose

$$
r_{1}+r_{2}(4 x+3)+r_{3}(3 x-4)+r_{4}\left(x^{2}+2\right)+r_{5}\left(x-x^{2}=0 .\right.
$$

Then

$$
\left(r_{4}-r_{5}\right) x^{2}+\left(4 r_{2}+3 r_{3}+r_{5}\right) x+\left(r_{1}+r_{2}-4 r_{3}+2 r_{4}\right)=0 .
$$

Thus we solve the system

$$
\begin{aligned}
r_{4}-r_{5} & =0 \\
4 r_{2}+3 r_{3}+r_{5} & =0 \\
r_{1}+3 r_{2}-4 r_{3}+2 r_{4} & =0
\end{aligned}
$$

We row reduce the augmented matrix

$$
\left[\begin{array}{ccccc|c}
0 & 0 & 0 & 1 & -1 & 0 \\
0 & 4 & 3 & 0 & 1 & 0 \\
1 & 3 & -4 & 2 & 0 & 0
\end{array}\right]
$$

to obtain

$$
\left[\begin{array}{ccccc|c}
1 & 0 & -25 / 4 & 0 & 5 / 4 & 0 \\
0 & 1 & 3 / 4 & 0 & 1 / 4 & 0 \\
0 & 0 & 0 & 1 & -1 & 0
\end{array}\right]
$$

Since the third and fifth columns do not contain a pivot, r_{3} and r_{5} are free variables, so we can easily find a non-trivial solution for $r_{1}, r_{2}, r_{3}, r_{4}, r_{5}$. Thus the set is dependent.
3.2 \#13: Since $\cos ^{2} x=1+(-1) \sin ^{2} x$, the set of vectors is dependent.
$3.2 \# 14$: Suppose $r_{1} \sin x+r_{2} \cos x=0$. Setting $x=0$, we obtain $r_{2}=0$. Setting $x=\pi / 2$, we obtain $r_{1}=0$. Thus the set of vectors is independent.
$3.2 \# 18$: Suppose that $r_{1} e^{2 x}+r_{2} e^{3 x}+r_{3} e^{4 x}=0$. Differentiating twice, we obtain the two additional equations:

$$
\begin{aligned}
2 r_{1} e^{2 x}+3 r_{2} e^{3 x}+4 r_{3} e^{4 x} & =0 \\
4 r_{1} e^{2 x}+9 r_{2} e^{3 x}+16 r_{3} e^{4 x} & =0
\end{aligned}
$$

Substituting $x=0$ in these three equations yields the following homogeneous linear system:

$$
\begin{array}{r}
r_{1}+r_{2}+r_{3}=0 \\
2 r_{1}+3 r_{2}+4 r_{3}=0 \\
4 r_{1}+9 r_{2}+16 r_{3}=0
\end{array}
$$

Solving this system, we obtain $r_{1}=r_{2}=r_{3}=0$, so the set of vectors is independent.
3.2 \#20: $(x-1)^{2}=\left(x^{2}+1\right)+(-2) x$, so the set of vectors is dependent and hence is NOT a basis for P_{2}.

Section 3.3

3.3\#4: The coordinate vector is $[1,2,-1]$.
3.3\#6: The coordinate vector is $[-1,2,1,3]$.
3.3\#8: The coordinate vector is $[-4,-2,1,5]$.
3.3\#12: The coordinate vector is $[4,3,-5,4]$.
3.3\#21: The polynomial is

$$
3\left(x+x^{2}\right)+1\left(x-x^{2}\right)+2(1+x)=2 x^{2}+6 x+2 .
$$

