Math 224 Homework 10 Solutions

Section 6.3

6.3 #2: Let

$$A = \begin{bmatrix} 3/5 & 0 & 4/5 \\ -4/5 & 0 & 3/5 \\ 0 & 0 & 1 \end{bmatrix}$$

Then

$$A^T A = I,$$

so A is orthogonal and

$$A^{-1} = A^{T} = \begin{bmatrix} 3/5 & -4/5 & 0\\ 0 & 0 & 1\\ 4/5 & 3/5 & 0 \end{bmatrix}.$$

6.3 #20: Suppose that A is orthogonal. Then A^T is also orthogonal, so $A^{-1} = A^T$ is also orthogonal. Thus

$$||A\mathbf{x}|| = ||\mathbf{x}||$$
 and $||A^{-1}\mathbf{x}|| = ||\mathbf{x}||.$

Thus

$$||A\mathbf{x}|| = ||A^{-1}\mathbf{x}||$$

for all \mathbf{x} in \mathbb{R}^n .

6.3 #21: If A is orthogonal, then $A^T A = I$, so:

$$(A^{2})^{T}A^{2} = I$$

$$= (AA)^{T}AA$$

$$= A^{T}A^{T}AA$$

$$= A^{T}IA$$

$$= A^{T}A$$

$$= I$$

Thus A^2 is also orthogonal.

Mathematics Department

6.3 #22: If A is orthogonal, then $A^T A = I$. Thus:

$$det(A^{T}A) = det(I)$$

$$det(A^{T}) det(A) = 1$$

$$det(A) det(A) = 1$$

$$det(A)^{2} = 1$$

$$det(A) = \pm 1$$

6.3 #23: An example is the matrix

$$A = \left[\begin{array}{cc} 2 & 1 \\ 1 & 1 \end{array} \right],$$

which has determinant 1 but is not orthogonal since

$$A^T A = \left[\begin{array}{cc} 5 & 3 \\ 3 & 2 \end{array} \right] \neq I.$$

6.3 #24: Since C is orthogonal, $C^{-1} = C^T$. We can rewrite $C^{-1}AC = D$ as $A = CDC^{-1}$. Thus:

$$A^{T} = (CDC^{-1})^{T}$$
$$= (CDC^{T})^{T}$$
$$= (C^{T})^{T}D^{T}C^{T}$$
$$= CDC^{T}$$
$$= CDC^{-1}$$
$$= A$$

Thus A is symmetric.

6.3 #31: Since A and C are orthogonal, $A^T A = I$ and $C^T C = I$, so $A^{-1} = A^T$ and $C^{-1} = C^T$. Thus:

$$(C^{-1}AC)^{T}(C^{-1}AC) = C^{T}A^{T}(C^{-1})^{T}C^{-1}AC$$
$$= C^{T}A^{T}(C^{T})^{T}C^{T}AC$$
$$= C^{T}A^{T}CC^{T}AC$$
$$= C^{T}A^{T}AC$$
$$= C^{T}C$$
$$= I$$

Thus $C^{-1}AC$ is orthogonal.

Mathematics Department

Section 6.4

The projection is

$$P\begin{bmatrix}1\\1\\2\\1\end{bmatrix} = \begin{bmatrix}5/4\\5/4\\7/4\\3/4\end{bmatrix}.$$

6.4 #16: (a)

$$P^{2} = (A(A^{T}A)^{-1}A^{T})^{2}$$

= $(A(A^{T}A)^{-1}A^{T})(A(A^{T}A)^{-1}A^{T})$
= $A(A^{T}A)^{-1}(A^{T}A)(A^{T}A)^{-1}A^{T}$
= $A(A^{T}A)^{-1}A^{T}$
= P

Mathematics Department

•

(b)

$$P^{T} = (A(A^{T}A)^{-1}A^{T})^{T}$$

= $(A^{T})^{T}((A^{T}A)^{-1})^{T}A^{T}$
= $A((A^{T}A)^{T})^{-1}A^{T}$
= $A(A^{T}A)^{-1}A^{T}$
= P

6.3 #21: If P is an invertible projection matrix, then $P^2 = P$ implies P = I (since we can multiply both sides by P^{-1}). Thus the only invertible projection matrix is the identity matrix I.