Math 224 Homework 10 Solutions

Section 6.3

6.3 \#2: Let

$$
A=\left[\begin{array}{ccc}
3 / 5 & 0 & 4 / 5 \\
-4 / 5 & 0 & 3 / 5 \\
0 & 0 & 1
\end{array}\right]
$$

Then

$$
A^{T} A=I
$$

so A is orthogonal and

$$
A^{-1}=A^{T}=\left[\begin{array}{ccc}
3 / 5 & -4 / 5 & 0 \\
0 & 0 & 1 \\
4 / 5 & 3 / 5 & 0
\end{array}\right]
$$

6.3 \#20: Suppose that A is orthogonal. Then A^{T} is also orthogonal, so $A^{-1}=A^{T}$ is also orthogonal. Thus

$$
\|A \mathbf{x}\|=\|\mathbf{x}\| \text { and }\left\|A^{-1} \mathbf{x}\right\|=\|\mathbf{x}\|
$$

Thus

$$
\|A \mathbf{x}\|=\left\|A^{-1} \mathbf{x}\right\|
$$

for all \mathbf{x} in \mathbb{R}^{n}.
6.3\#21: If A is orthogonal, then $A^{T} A=I$, so:

$$
\begin{aligned}
\left(A^{2}\right)^{T} A^{2} & =I \\
& =(A A)^{T} A A \\
& =A^{T} A^{T} A A \\
& =A^{T} I A \\
& =A^{T} A \\
& =I
\end{aligned}
$$

Thus A^{2} is also orthogonal.
6.3 $\# 22$: If A is orthogonal, then $A^{T} A=I$. Thus:

$$
\begin{aligned}
\operatorname{det}\left(A^{T} A\right) & =\operatorname{det}(I) \\
\operatorname{det}\left(A^{T}\right) \operatorname{det}(A) & =1 \\
\operatorname{det}(A) \operatorname{det}(A) & =1 \\
\operatorname{det}(A)^{2} & =1 \\
\operatorname{det}(A) & = \pm 1
\end{aligned}
$$

6.3 \#23: An example is the matrix

$$
A=\left[\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right]
$$

which has determinant 1 but is not orthogonal since

$$
A^{T} A=\left[\begin{array}{ll}
5 & 3 \\
3 & 2
\end{array}\right] \neq I
$$

6.3 \#24: Since C is orthogonal, $C^{-1}=C^{T}$. We can rewrite $C^{-1} A C=D$ as $A=C D C^{-1}$. Thus:

$$
\begin{aligned}
A^{T} & =\left(C D C^{-1}\right)^{T} \\
& =\left(C D C^{T}\right)^{T} \\
& =\left(C^{T}\right)^{T} D^{T} C^{T} \\
& =C D C^{T} \\
& =C D C^{-1} \\
& =A
\end{aligned}
$$

Thus A is symmetric.
6.3\#31: Since A and C are orthogonal, $A^{T} A=I$ and $C^{T} C=I$, so $A^{-1}=A^{T}$ and $C^{-1}=C^{T}$. Thus:

$$
\begin{aligned}
\left(C^{-1} A C\right)^{T}\left(C^{-1} A C\right) & =C^{T} A^{T}\left(C^{-1}\right)^{T} C^{-1} A C \\
& =C^{T} A^{T}\left(C^{T}\right)^{T} C^{T} A C \\
& =C^{T} A^{T} C C^{T} A C \\
& =C^{T} A^{T} A C \\
& =C^{T} C \\
& =I
\end{aligned}
$$

Thus $C^{-1} A C$ is orthogonal.

Section 6.4

6.4\#2: $A=\left[\begin{array}{c}1 \\ -1 \\ 2\end{array}\right]$, so

$$
P=A\left(A^{T} A\right)^{-1} A^{T}=\left[\begin{array}{ccc}
1 / 6 & -1 / 6 & 1 / 3 \\
-1 / 6 & 1 / 6 & -1 / 3 \\
1 / 3 & -1 / 3 & 2 / 3
\end{array}\right]
$$

The projection is

$$
P\left[\begin{array}{l}
1 \\
3 \\
4
\end{array}\right]=\left[\begin{array}{c}
1 \\
-1 \\
2
\end{array}\right]
$$

6.4 \#8: $A=\left[\begin{array}{ccc}1 & 1 & -1 \\ 1 & -1 & 1 \\ 1 & 1 & 1 \\ 1 & -1 & -1\end{array}\right]$, so

$$
P=A\left(A^{T} A\right)^{-1} A^{T}=\left[\begin{array}{cccc}
3 / 4 & -1 / 4 & 1 / 4 & 1 / 4 \\
-1 / 4 & 3 / 4 & 1 / 4 & 1 / 4 \\
1 / 4 & 1 / 4 & 3 / 4 & -1 / 4 \\
1 / 4 & 1 / 4 & -1 / 4 & 3 / 4
\end{array}\right]
$$

The projection is

$$
P\left[\begin{array}{l}
1 \\
1 \\
2 \\
1
\end{array}\right]=\left[\begin{array}{l}
5 / 4 \\
5 / 4 \\
7 / 4 \\
3 / 4
\end{array}\right]
$$

6.4 \#16: (a)

$$
\begin{aligned}
P^{2} & =\left(A\left(A^{T} A\right)^{-1} A^{T}\right)^{2} \\
& =\left(A\left(A^{T} A\right)^{-1} A^{T}\right)\left(A\left(A^{T} A\right)^{-1} A^{T}\right) \\
& =A\left(A^{T} A\right)^{-1}\left(A^{T} A\right)\left(A^{T} A\right)^{-1} A^{T} \\
& =A\left(A^{T} A\right)^{-1} A^{T} \\
& =P
\end{aligned}
$$

(b)

$$
\begin{aligned}
P^{T} & =\left(A\left(A^{T} A\right)^{-1} A^{T}\right)^{T} \\
& =\left(A^{T}\right)^{T}\left(\left(A^{T} A\right)^{-1}\right)^{T} A^{T} \\
& =A\left(\left(A^{T} A\right)^{T}\right)^{-1} A^{T} \\
& =A\left(A^{T} A\right)^{-1} A^{T} \\
& =P
\end{aligned}
$$

6.3\#21: If P is an invertible projection matrix, then $P^{2}=P$ implies $P=I$ (since we can multiply both sides by P^{-1}). Thus the only invertible projection matrix is the identity matrix I.

