Math 224
 Final Exam Topics

The final exam will be largely computational, and will consist of (at least) the following types of questions.

1. Solve a linear system. Some relevant review problems are: $1.4 \# 13-24$.
2. Find a basis for the column space, nullspace, and row space of a given matrix. I could ask you to find an orthogonal or orthonormal basis for one of these spaces. Some relevant review problems are: 2.2 \#1-6. Also review how to find an orthogonal or orthonormal basis for a space.
3. Find the matrix representation of a linear transformation $T: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$. Some relevant review problems are: $2.3 \# 5-11,13-20$.
4. Compute the determinant of different matrices using known determinants and properties of determinants. Some relevant review problems are: 4.2 \#15-25.
5. Compute the eigenvalues and eigenvectors of a given matrix. Use the eigenvalues and eigenvectors to diagonalize the matrix and find a closed-form expression for the k-th power of the matrix. Some relevant review problems are: $5.1 \# 2-16$; 5.2 \#1-12.
6. Solve a system of linear differential equations using eigenvalue methods. Some relevant review problems are: $5.3 \# 6-13$.
7. Compute the projection of a given vector in \mathbb{R}^{n} on a subspace W. Some relevant review problems are: $6.1 \# 1-3,5-7,9,11,13,14,15,17,20,21 ; 6.2 \# 1-4 ; 6.4$ \#1-4, 7, 8.
8. Compute the coordinate vector of a given vector in a vector space V relative to some ordered basis. Some relevant review problems are: 3.3 \#1-9, 11, 12.
9. Find the matrix representation of a linear transformation $T: V \rightarrow V^{\prime}$ where V and V^{\prime} are two vector spaces. Some relevant review problems are: $3.4 \# 20,21$, $23,26,27$.
10. There will be two "proof" questions. One will be on projections using an orthogonal basis, and one will be on eigenvalues.
