Math 224, Fall 2007

Exam 3

Thursday, December 6, 2007

- You have 1 hour and 20 minutes.
- No notes, books, or other references.
- You are permitted to use Maple during this exam, but you must start with a blank worksheet. In particular, you are allowed to use the GramSchmidt command in Maple. Start by typing with(linalg): and with(LinearAlgebra):
- YOU MUST SHOW ALL WORK TO RECEIVE CREDIT. ANSWERS FOR WHICH NO WORK IS SHOWN WILL RECEIVE NO CREDIT (UNLESS SPECIFICALLY STATED OTHERWISE).
- Good luck! Eat candy as necessary!

Name:
"On my honor, I have neither given nor received any aid on this examination."

Signature:

1. For parts (a)-(e), let W be the subspace of \mathbb{R}^{3} spanned by $\{[-1,1,-1],[1,3,2]\}$.
(a) (5 points) Find a basis for W^{\perp}.

Solution. W^{\perp} is the nullspace of the matrix

$$
A=\left[\begin{array}{ccc}
-1 & 1 & -1 \\
1 & 3 & 2
\end{array}\right]
$$

Thus

$$
W^{\perp}=\operatorname{sp}([-5,-1,4]) .
$$

(b) (5 points) Write $\mathbf{b}=[1,2,2]$ in the form

$$
\mathbf{b}=\mathbf{b}_{\mathbf{w}}+\mathbf{b}_{\mathbf{w}^{\perp}},
$$

where $\mathbf{b}_{\mathbf{W}}$ is in W and $\mathbf{b}_{\mathbf{W}^{\perp}}$ is in W^{\perp}.

Solution. We want to find $r_{1}, r_{2}, r_{3}, r_{4}$ such that

$$
r_{1}\left[\begin{array}{c}
-1 \\
1 \\
-1
\end{array}\right]+r_{2}\left[\begin{array}{l}
1 \\
3 \\
2
\end{array}\right]+r_{3}\left[\begin{array}{c}
-5 \\
-1 \\
4
\end{array}\right]=\left[\begin{array}{l}
1 \\
2 \\
2
\end{array}\right]
$$

Thus we form the augmented matrix

$$
\left[\begin{array}{ccc|c}
-1 & 1 & -5 & 1 \\
1 & 3 & -1 & 2 \\
-1 & 2 & 4 & 2
\end{array}\right]
$$

and row reduce to obtain

$$
r_{1}=-1 / 3, r_{2}=11 / 14, r_{3}=1 / 42
$$

Thus

$$
\mathbf{b}_{\mathbf{W}}=\frac{-1}{3}[-1,1,-1]+\frac{11}{14}[1,3,2]=[47 / 42,85 / 42,40 / 21]
$$

and

$$
\mathbf{b}_{\mathbf{W}^{\perp}}=\frac{1}{42}[-5,-1,4]=[-5 / 42,-1 / 42,2 / 21] .
$$

(c) (5 points) Confirm that $\mathbf{b}_{\mathbf{W}}$ and $\mathbf{b}_{\mathbf{W}^{\perp}}$ are orthogonal.

Solution. The dot product of $\mathbf{b}_{\mathbf{W}}$ and $\mathbf{b}_{\mathbf{W}^{\perp}}$ is 0 , so $\mathbf{b}_{\mathbf{W}}$ and $\mathbf{b}_{\mathbf{W}^{\perp}}$ are orthogonal.
(d) (5 points) Find the projection matrix P for W.

Solution. First construct the matrix

$$
A=\left[\begin{array}{cc}
-1 & 1 \\
1 & 3 \\
-1 & 2
\end{array}\right]
$$

Then the projection matrix for W is

$$
P=A\left(A^{T} A\right)^{-1} A^{T}=\left[\begin{array}{ccc}
17 / 42 & -5 / 42 & 10 / 21 \\
-5 / 42 & 41 / 42 & 2 / 21 \\
10 / 21 & 2 / 21 & 13 / 21
\end{array}\right]
$$

(e) (5 points) Find $\mathbf{b}_{\mathbf{W}}$ using P. Confirm that you obtain the same result for $\mathrm{b}_{\mathbf{w}}$ that you did in part (b).

Solution.

$$
\mathbf{b}_{\mathbf{W}}=P \mathbf{b}=[47 / 42,85 / 42,40 / 21]
$$

This is the same result that we obtained in part (b).
2. (16 points total, 2 points each) If the $n \times n$ matrices A and B are orthogonal, which of the following matrices must be orthogonal as well? Explain your answers.
(a) $3 A$

Solution. $(3 A)^{T}(3 A)=9 A^{T} A=9 I \neq I$, so $3 A$ is NOT orthogonal.
(b) $-B$

Solution. $(-B)^{T}(-B)=B^{T} B=I$, so $-B$ IS orthogonal.
(c) $A B$

Solution. $(A B)^{T} A B=B^{T} A^{T} A B=B^{T} I B=B^{T} B=I$, so $A B$ IS orthogonal.
(d) $A+B$

Solution. $(A+B)^{T}(A+B)=\left(A^{T}+B^{T}\right)(A+B)=A^{T} A+A^{T} B+B^{T} A+$ $B^{T} B=2 I+A^{T} B+B^{T} B \neq I$, so $(A+B)$ is NOT orthogonal.
(e) B^{-1}

Solution. Since B is orthogonal, $B^{-1}=B^{T}$. Thus $\left(B^{-1}\right)^{T} B^{-1}=\left(B^{T}\right)^{T} B^{T}=$ $B B^{T}=I$, so B^{-1} IS orthogonal.
(f) $B^{-1} A B$

Solution.

$$
\begin{aligned}
\left(B^{-1} A B\right)^{T}\left(B^{-1} A B\right) & =\left(B^{T} A^{T}\left(B^{-1}\right)^{T}\right)\left(B^{-1} A B\right) \\
& =B^{T} A^{T}\left(B^{T}\right)^{T} B^{T} A B \\
& =B^{T} A^{T} B B^{T} A B \\
& =B^{T} A^{T} A B \\
& =I
\end{aligned}
$$

Thus $B^{-1} A B$ IS orthogonal.
(g) A^{T}

Solution. Since $A^{T} A=I, A^{T}=A^{-1}$, so $\left(A^{T}\right)^{T} A^{T}=A A^{T}=I$, so A^{T} IS orthogonal.
(h) A^{2}

Solution. $\left(A^{2}\right)^{T} A^{2}=(A A)^{T} A A=A^{T} A^{T} A A=A^{T} A=I$, so A^{2} IS orthogonal.
3. (4 points) Is the set $\left\{3 \sin ^{2} x,-5 \cos ^{2} x, 119\right\}$ a linearly independent set of vectors in F (the vector space of all functions $f: \mathbb{R} \rightarrow \mathbb{R}$)?
Solution. The set is a linearly DEPENDENT set of vectors in F since, for example,

$$
\left(\frac{119}{3}\right) 3 \sin ^{2} x+\frac{-119}{5}\left(-5 \sin ^{2} x\right)+(-1) 119=0
$$

is a dependence relation among the vectors.
4. (10 points) The set

$$
B^{\prime}=\left\{1+x^{2}, x+x^{2}, 1+2 x+x^{2}\right\}
$$

is a basis for P_{2}, the set of all polynomials of degree less than or equal to 2 (you do not need to show this). Find the coordinate vector of $p(x)=1+4 x+7 x^{2}$ relative to B^{\prime}.
Solution. First, coordinatize the vectors in the basis B^{\prime} relative to the standard basis $B=\left\{x^{2}, x, 1\right\}$ of P_{2} :

$$
\begin{aligned}
\left(1+x^{2}\right)_{B} & =[1,0,1] \\
\left(x+x^{2}\right)_{B} & =[1,1,0] \\
\left(1+2 x+x^{2}\right)_{B} & =[1,2,1]
\end{aligned}
$$

Next, note that $(p(x))_{B}=[7,4,1]$. Thus we want to find r_{1}, r_{2}, r_{3} such that

$$
r_{1}\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]+r_{2}\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]+r_{3}\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right]=\left[\begin{array}{l}
7 \\
4 \\
1
\end{array}\right]
$$

Thus we form the augmented matrix

$$
\left[\begin{array}{lll|l}
1 & 1 & 1 & 7 \\
0 & 1 & 2 & 4 \\
1 & 0 & 1 & 1
\end{array}\right]
$$

and row reduce to obtain

$$
r_{1}=2, r_{2}=6, r_{3}=-1
$$

Thus the coordinate vector of $p(x)$ relative to B^{\prime} is

$$
(p(x))_{B^{\prime}}=[2,6,-1] .
$$

5. (10 points) Suppose that A is an orthogonal matrix. Show that the only eigenvalues of A are 1 and -1 .
Solution. Suppose that λ is an eigenvalue of A with corresponding eigenvector v. Then

$$
A \mathbf{v}=\lambda \mathbf{v}
$$

Since A is an orthogonal matrix,

$$
\|A \mathbf{v}\|=\|\mathbf{v}\| .
$$

Thus

$$
\|\lambda \mathbf{v}\|=\|\mathbf{v}\| .
$$

But

$$
\|\lambda \mathbf{v}\|=|\lambda| \cdot\|\mathbf{v}\| .
$$

Thus

$$
|\lambda| \cdot\|\mathbf{v}\|=\|\mathbf{v}\| .
$$

Since $\mathbf{v} \neq \mathbf{0}$ (by definition of an eigenvector), we conclude that $|\lambda|=1$, so $\lambda= \pm 1$.
6. (a) (5 points) Let A be an $m \times n$ matrix. Show that $A^{T} A$ is an $n \times n$ matrix with the same rank as A. Hint: show that $\operatorname{nullity}(A)=\operatorname{nullity}\left(A^{T} A\right)$ and explain why that implies that $\operatorname{rank}(A)=\operatorname{rank}\left(A^{T} A\right)$.
Solution. Since A is an $m \times n$ matrix, A^{T} is an $n \times m$ matrix, so $A^{T} A$ is an $n \times n$ matrix. The rank equation for A is

$$
\operatorname{rank}(A)+\operatorname{nullity}(A)=n
$$

The rank equation for $A^{T} A$ is

$$
\operatorname{rank}\left(A^{T} A\right)+\operatorname{nullity}\left(A^{T} A\right)=n
$$

Thus

$$
\operatorname{rank}(A)+\operatorname{nullity}(A)=\operatorname{rank}\left(A^{T} A\right)+\operatorname{nullity}\left(A^{T} A\right)
$$

So to show that A and $A^{T} A$ have the same rank, it's sufficient to show that A and $A^{T} A$ have the same nullity.

- Suppose that \mathbf{x} is in the nullspace of A. Then $A \mathbf{x}=\mathbf{0}$. Thus $\left(A^{T} A\right) \mathbf{x}=$ $A^{T} A \mathbf{x}=A^{T} \mathbf{0}=\mathbf{0}$, so \mathbf{x} is in the nullspace of $A^{T} A$.
- Suppose that \mathbf{x} is in the nullspace of $A^{T} A$. Then $A^{T} A \mathbf{x}=\mathbf{0}$. Multiplying both sides by \mathbf{x}^{T}, we obtain:

$$
\begin{aligned}
\mathbf{x}^{T} A^{T} A \mathbf{x} & =0 \\
(A \mathbf{x})^{T}(A \mathbf{x}) & =0 \\
(A \mathbf{x}) \cdot(A \mathbf{x}) & =0 \\
\|A \mathbf{x}\| & =0 \\
A \mathbf{x} & =\mathbf{0}
\end{aligned}
$$

Thus \mathbf{x} is in the nullspace of A.
We conclude that any vector in the nullspace of A is also in the nullspace of $A^{T} A$ and any vector in the nullspace of $A^{T} A$ is also in the nullspace of A. Thus the nullspace of A is equal to the nullspace of $A^{T} A$, so

$$
\operatorname{nullity}(A)=\operatorname{nullity}\left(A^{T} A\right)
$$

and

$$
\operatorname{rank}(A)=\operatorname{rank}\left(A^{T} A\right)
$$

(b) (5 points) Suppose that $\left\{\mathbf{b}_{\mathbf{1}}, \mathbf{b}_{\mathbf{2}}, \ldots, \mathbf{b}_{\mathbf{k}}\right\}$ is a basis for a subspace W of \mathbb{R}^{n}. Let A be the matrix whose columns are the vectors $\mathbf{b}_{\mathbf{1}}, \mathbf{b}_{\mathbf{2}}, \ldots, \mathbf{b}_{\mathbf{k}}$. Explain why $A^{T} A$ must be invertible.
Solution. Since the set $\left\{\mathbf{b}_{\mathbf{1}}, \mathbf{b}_{\mathbf{2}}, \ldots, \mathbf{b}_{\mathbf{k}}\right\}$ is a basis for W, the vectors $\mathbf{b}_{\mathbf{1}}, \mathbf{b}_{\mathbf{2}}, \ldots, \mathbf{b}_{\mathbf{k}}$ are independent. Thus A is an $n \times k$ matrix with rank $k(A$ has k independent columns). Since A is an $n \times k$ matrix, A^{T} is a $k \times n$ matrix, so $A^{T} A$ is a $k \times k$ matrix. From part (a), $\operatorname{rank}(A)=\operatorname{rank}\left(A^{T} A\right)$. Thus $A^{T} A$ is a $k \times k$ matrix, with rank k, so it is invertible.
7. (10 points) Suppose that P is any projection matrix with columns $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{n}}$. Show that for all $i=1,2, \ldots, n,\left\|\mathbf{v}_{\mathbf{i}}\right\|^{2}$ is equal to $P_{i, i}$ (the diagonal entry (i, i) in the matrix P). For example, for $i=2$ in the matrix below, this number is $2 / 6=4 / 36+4 / 36+4 / 36$:

$$
P=\left[\begin{array}{ccc}
5 / 6 & 2 / 6 & -1 / 6 \\
2 / 6 & 2 / 6 & 2 / 6 \\
-1 / 6 & 2 / 6 & 5 / 6
\end{array}\right]
$$

You must prove the result for an arbitrary projection matrix P; this example is just to give you an example of the result for a particular matrix.
Solution. P is a projection matrix with columns $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{n}}$:

$$
P=\left[\begin{array}{llll}
& & & \mathbf{v}_{\mathbf{1}} \\
\mathbf{v}_{\mathbf{2}} & \cdots & \mathbf{v}_{\mathbf{n}}
\end{array}\right] .
$$

Then P^{T} is a matrix with rows $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{n}}$:

$$
P^{T}=\left[\begin{array}{l}
\mathbf{v}_{\mathbf{1}} \\
\mathbf{v}_{\mathbf{2}} \\
\cdots \\
\mathbf{v}_{\mathbf{n}}
\end{array}\right]
$$

Since P is a projection matrix, $P^{2}=P=P^{T}$. Thus

$$
P^{2}=P^{T} P=\left[\begin{array}{cccc}
\mathbf{v}_{\mathbf{1}} \cdot \mathbf{v}_{\mathbf{1}} & \mathbf{v}_{\mathbf{1}} \cdot \mathbf{v}_{\mathbf{2}} & \cdots & \mathbf{v}_{\mathbf{1}} \cdot \mathbf{v}_{\mathbf{n}} \\
\mathbf{v}_{\mathbf{2}} \cdot \mathbf{v}_{\mathbf{1}} & \mathbf{v}_{\mathbf{2}} \cdot \mathbf{v}_{\mathbf{2}} & \cdots & \mathbf{v}_{\mathbf{2}} \cdot \mathbf{v}_{\mathbf{n}} \\
\cdots & \cdots & \cdots & \cdots \\
\mathbf{v}_{\mathbf{n}} \cdot \mathbf{v}_{\mathbf{1}} & \mathbf{v}_{\mathbf{n}} \cdot \mathbf{v}_{\mathbf{2}} & \cdots & \mathbf{v}_{\mathbf{n}} \cdot \mathbf{v}_{\mathbf{n}}
\end{array}\right]=P .
$$

Thus the diagonal entry

$$
P_{i, i}=\mathbf{v}_{\mathbf{i}} \cdot \mathbf{v}_{\mathbf{i}}=\left\|\mathbf{v}_{\mathbf{i}}\right\|^{2} .
$$

8. (10 points total, 1 point each) Classify each of the following statements as True or False. No explanation is necessary.
(a) The entries of an orthogonal matrix are all less than or equal to 1 .

True.
(b) The determinant of any orthogonal matrix is 1 .

False. The determinant can be 1 or -1 .
(c) The matrix $P=A\left(A^{T} A\right)^{-1} A^{T}$ is symmetric for all matrices A.

True. For a projection matrix $P, P^{T}=P$.
(d) Every vector in \mathbb{R}^{n} is in some orthonormal basis for \mathbb{R}^{n}.

False. Any vector whose norm is not equal to 1 cannot be in an orthonormal basis.
(e) Every non-zero subspace W of \mathbb{R}^{n} has an orthonormal basis.

True. The Gram-Schmidt process enables us to construct an orthonormal basis for any subspace.
(f) Given a non-zero finite dimensional vector space V, each vector \mathbf{v} in V is associated with a unique coordinate vector relative to a given basis for V.
True.
(g) Any two bases in a finite-dimensional vector space V have the same number of elements.
True.
(h) The set of all polynomials of degree 4, together with the zero polynomial, is a vector space.
False. The set is not closed under vector addition.
(i) There are only six possible ordered bases for \mathbb{R}^{3}.

False. There are infinitely many ordered bases for \mathbb{R}^{3}.
(j) There are only six possible ordered bases for \mathbb{R}^{3} consisting of the standard unit coordinate vectors $[1,0,0],[0,1,0],[0,0,1]$ in \mathbb{R}^{3}.
True.
Bonus (10 points). Let P_{4} denote the vector space of all polynomials of degree less than or equal to 4 . We can define a dot product on P_{4} by

$$
p(x) \cdot q(x)=\int_{-1}^{1} p(x) q(x) d x
$$

Find an orthonormal basis of P_{4} using this dot product.
Hint: Choose a basis B for P_{4} and use the Gram-Schmidt procedure to transform your basis B into an orthonormal basis.

