Math 224, Fall 2007

Exam 2 Solutions

- You have 1 hour and 20 minutes.
- No notes, books, or other references.
- You are permitted to use Maple during this exam, but you must start with a blank worksheet. Start by typing with(linalg):
- YOU MUST SHOW ALL WORK TO RECEIVE CREDIT. ANSWERS FOR WHICH NO WORK IS SHOWN WILL RECEIVE NO CREDIT (UNLESS SPECIFICALLY STATED OTHERWISE).
- Good luck! Eat candy as necessary!

Name:
"On my honor, I have neither given nor received any aid on this examination."

Signature:

Question	Score	Maximum
1		8
2		20
3		10
4		10
5		20
6		6
7		6
8		10
9		10
Bonus		10
Total		100

1. (a) (5 points) Find the volume of the 3 -box in \mathbf{R}^{4} with vertices $(1,0,0,1)$, $(-1,2,0,1),(3,0,1,1)$, and $(-1,4,0,1)$.
The 3 -box is determined by the vectors

$$
\begin{aligned}
& \mathbf{v}_{\mathbf{1}}=(-1,2,0,1)-(1,0,0,1)=[-2,2,0,0] \\
& \mathbf{v}_{\mathbf{2}}=(3,0,1,1)-(1,0,0,1)=[2,0,1,0] \\
& \mathbf{v}_{\mathbf{3}}=(-1,4,0,1)-(1,0,0,1)=[-2,4,0,0]
\end{aligned}
$$

The volume of the 3-box is given by

$$
V=\sqrt{\operatorname{det}\left(A^{T} A\right)}
$$

where

$$
A=\left[\begin{array}{rrr}
-2 & 2 & -2 \\
2 & 0 & 4 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Using Maple, we compute

$$
V=4
$$

Note that even though A has a row of zeros, $A^{T} A$ does not have a row of zeros. Moreover, A is a 4×3 matrix, so $\operatorname{det} A$ is not defined.
(b) (3 points) Your friend (who, sadly, is not enrolled in Linear Algebra) claims that there is no such thing as 4 -space, and thus, there is no such thing as a 3 -box in \mathbf{R}^{4}. State the precise definition of a m-box in \mathbf{R}^{n}, where $m \leq n$, and explain to your friend why this definition makes sense (in terms of how we think of boxes in \mathbf{R}^{2} and \mathbf{R}^{3}).
Let $\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{\mathbf{m}}$ be m independent vectors in \mathbf{R}^{n} for $m \leq n$. The m-box in \mathbf{R}^{n} determined by these vectors is the set of all vectors \mathbf{x} satisfying

$$
\mathbf{x}=t_{1} \mathbf{a}_{\mathbf{1}}+t_{2} \mathbf{a}_{\mathbf{2}}+\ldots t_{m} \mathbf{a}_{\mathbf{m}}
$$

for $0 \leq t_{i} \leq 1, i=1,2, \ldots, m$.
2. Let

$$
A=\left[\begin{array}{rrr}
1 & 3 & 3 \\
-3 & -5 & -3 \\
3 & 3 & 1
\end{array}\right]
$$

(a) (2 points) Find the characteristic polynomial of A.

The characteristic polynomial is

$$
p(\lambda)=(1-\lambda)\left(\lambda^{2}+4 \lambda+4\right)=\left(1-\lambda(\lambda+2)^{2} .\right.
$$

(b) (2 points) Find the eigenvalues of A.

We find the eigenvalues of A by solving $p(\lambda)=0$. We obtain

$$
\lambda_{1}=1 \text { and } \lambda_{2}=\lambda_{3}=-2
$$

(c) (4 points) Find the eigenvectors of A.

The eigenvectors corresponding to $\lambda_{1}=1$ are all vectors of the form

$$
\mathbf{v}_{\mathbf{1}}=\left[\begin{array}{r}
r \\
-r \\
r
\end{array}\right]
$$

where $r \neq 0$. The eigenvectors corresponding to $\lambda_{2}=\lambda_{3}$ are all vectors of the form

$$
\mathbf{v}_{\mathbf{2}}=\left[\begin{array}{r}
-r-s \\
r \\
s
\end{array}\right]
$$

where r, s are not both equal to 0 .
(d) (4 points) Explain why A must be diagonalizable.

The algebraic and geometric multiplicity of λ_{1} are both equal to 1 . The algebraic and geometric multiplicity of $\lambda_{2}=\lambda_{3}=-2$ are both equal to 2. Thus the algebraic multiplicity of each eigenvalue of A is equal to the geometric multiplicity, so A must be diagonalizable.
(e) (4 points) Find an invertible matrix C and a diagonal matrix D such that $C^{-1} A C=D$.
We construct the matrix C whose column vectors consist of independent eigenvectors of A :

$$
C=\left[\begin{array}{rrr}
1 & -1 & -1 \\
-1 & 1 & 0 \\
1 & 0 & 1
\end{array}\right]
$$

Then D is the diagonal matrix whose diagonal entries are the eigenvalues of A :

$$
D=\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & -2 & 0 \\
0 & 0 & -2
\end{array}\right]
$$

(f) (4 points) Find A^{k} in terms of k.

We can rewrite $C^{-1} A C=D$ as $A=C D C^{-1}$. Thus $A^{k}=C D^{k} C^{-1}$. Since D is a diagonal matrix,

$$
D^{k}=\left[\begin{array}{rrr}
1^{k} & 0 & 0 \\
0 & (-2)^{k} & 0 \\
0 & 0 & (-2)^{k}
\end{array}\right]
$$

Performing the matrix multiplication in Maple, we obtain

$$
A^{k}=\left[\begin{array}{rrr}
1 & 1-(-2)^{k} & 1-(-2)^{k} \\
-1+(-2)^{k} & -1+2(-2)^{k} & -1+(-2)^{k} \\
1-(-2)^{k} & 1-(-2)^{k} & 1
\end{array}\right]
$$

3. Suppose that $\operatorname{det} A=7$, where

$$
A=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right]
$$

Evaluate the following:
(a) (5 points) $\left|\begin{array}{rrr}2 a & 2 b & 2 c \\ 3 d-a & 3 e-b & 3 f-c \\ 2 g & 2 h & 2 i\end{array}\right|=2 \cdot 3 \cdot 2 \cdot \operatorname{det} A=84$
(b) (5 points) $\left|\begin{array}{rrr}a+2 d & b+2 e & c+2 f \\ 3 g & 3 h & 3 i \\ d & e & f\end{array}\right|=-1 \cdot 3 \cdot \operatorname{det} A=-21$
4. (a) (4 points) What are the possible values of of the determinant of an $n \times n$ matrix A such that $A A^{T}=I$?
If $A A^{T}=I$, then

$$
\begin{aligned}
\operatorname{det}\left(A A^{T}\right) & =\operatorname{det}(I) \\
\operatorname{det}(A) \operatorname{det}\left(A^{T}\right) & =1 \\
\operatorname{det}(A) \operatorname{det}(A) & =1 \\
(\operatorname{det}(A))^{2} & =1 \\
\operatorname{det}(A) & = \pm 1
\end{aligned}
$$

(b) (4 points) Let A be an $n \times n$ invertible matrix. Prove that

$$
\operatorname{det}\left(A^{-1}\right)=\frac{1}{\operatorname{det} A}
$$

Since A is invertible, $A^{-1} A=I$. Thus:

$$
\begin{aligned}
\operatorname{det}\left(A^{-1} A\right) & =\operatorname{det}(I) \\
\operatorname{det}\left(A^{-1}\right) \operatorname{det} A & =1 \\
\operatorname{det}\left(A^{-1}\right) & =\frac{1}{\operatorname{det} A}
\end{aligned}
$$

5. (a) (5 points) Let A be an $n \times n$ matrix such that A^{k} is equal to the zero matrix for some positive integer k. Show that the only eigenvalue of A is 0 .
Suppose that λ is an eigenvalue of A with corresponding eigenvector \mathbf{v}. Note that since $A \mathbf{v}=\lambda \mathbf{v}, A^{k} \mathbf{v}=\lambda^{k} \mathbf{v}$. Since $A^{k}=0, \lambda^{k} \mathbf{v}=0$. Since \mathbf{v} is a non-zero vector (by definition of eigenvector), we conclude that $\lambda^{k}=0$. Thus $\lambda=0$.
(b) (5 points) Let λ be an eigenvalue of an invertible matrix A. Show that $\lambda \neq 0$ and that λ^{-1} is an eigenvalue of A^{-1}.
First, note that if $\lambda=0$, then $\operatorname{det}(A-0 I)=\operatorname{det} A=0$, so A is not invertible. Since A is invertible, $\lambda \neq 0$. Next, we show that $A^{-1} \mathbf{v}=\lambda^{-1} \mathbf{v}$:

$$
\begin{aligned}
A \mathbf{v} & =\lambda \mathbf{v} \\
A^{-1} A \mathbf{v} & =\mathbf{v} \\
A^{-1} \lambda \mathbf{v} & =\mathbf{v} \\
A^{-1} \mathbf{v} & =\frac{1}{\lambda} \mathbf{v}
\end{aligned}
$$

Thus λ^{-1} is an eigenvalue of A^{-1}.
(c) (5 points) Suppose that A and B are two $n \times n$ matrices. Show that if A is similar to B, then A^{2} is similar to B^{2}.
Since A is similar to B, there is an invertible matrix C such that $A=$ $C^{-a} B C$. Squaring both sides, we obtain:

$$
\begin{gathered}
A^{2}=\left(C^{-1} B C\right)^{2} \\
A^{2}=C^{-1} B C C^{-1} B C \\
A^{2} \quad=C^{-1} B^{2} C
\end{gathered}
$$

Thus A^{2} is similar to B^{2}.
(d) (5 points) Suppose that A is a diagonalizable $n \times n$ matrix and has only 1 and -1 as eigenvalues. Show that $A^{2}=I_{n}$, where I_{n} is the $n \times n$ identity matrix.
Since A is diagonalizable, there is an invertible matrix C such that $C^{-1} A C=$ D, where D is a diagonal matrix whose diagonal entries are all ± 1 (the eigenvalues of A). Note that A and D are not necessarily 2×2 matrices, as the multiplicities of the eigenvalues could be greater than 1 . Since the diagonal entries of D are all $\pm 1, D^{2}=I_{n}$. Then:

$$
\begin{aligned}
A^{2} & =\left(C D C^{-1}\right)^{2} \\
& =C D^{2} C^{-1} \\
& =C I_{n} C^{-1} \\
& =I_{n}
\end{aligned}
$$

6. Suppose that A is a diagonalizable matrix with characteristic polynomial

$$
p(\lambda)=(\lambda-1)(\lambda-3)^{2}(\lambda-4)^{3} .
$$

(a) (2 points) Find the size of the matrix A.
A is a 6×6 matrix.
(b) (4 points) Find the dimension of E_{4}, the eigenspace corresponding to the eigenvalue 4.
Since A is diagonalizable, the algebraic multiplicity of each eigenvalue is equal to its geometric multiplicity. Since the algebraic multiplicity of $\lambda=4$ is 3 , the geometric multiplicity is also 3 . Thus the dimension of E_{4} is 3 .
7. (6 points) Suppose that A is a diagonalizable matrix with characteristic polynomial

$$
p(\lambda)=\lambda^{2}(\lambda-3)(\lambda+2)^{3} .
$$

Find the dimension of the nullspace of A.
The nullspace of A is the set of vectors \mathbf{v} that satisfy $A \mathbf{v}=\mathbf{0}$. Note that $A \mathbf{v}=\mathbf{0}$ is equivalent to $(A-0 I) \mathbf{v}=\mathbf{0}$. Thus the nullspace of A is the eigenspace corresponding to the $\lambda=0$ eigenvalue. Since $\lambda=0$ is an eigenvalue of algebraic multiplicity 2 , and A is diagonalizable, the nullspace of A has dimension 2 .
8. (10 points) Under what conditions does the 2×2 matrix

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

have no real eigenvalues?
A has no real eigenvalues if and only if $p(\lambda)=\operatorname{det}(A-\lambda I)=0$ has no real roots.

$$
\begin{aligned}
p(\lambda) & =(a-\lambda)(d-\lambda)-b c \\
& =\lambda^{2}-(a+d) \lambda+a d-b c
\end{aligned}
$$

Using the quadratic formula to solve $p(\lambda)=0$, we obtain

$$
\lambda=\frac{(a+d) \pm \sqrt{(a+d)^{2}-4(a d-b c)}}{2 a} .
$$

Thus A has no real eigenvalues if and only if

$$
(a-d)^{2}-4(a d-b c)<0
$$

9. (10 points) Classify each of the following statements as True or False. No explanation is necessary.
(a) Let $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ be a linear transformation with standard matrix representation A. The image under $T \circ T$ of an n-box in \mathbf{R}^{n} of volume V is a box in \mathbf{R}^{n} of volume $\operatorname{det}\left(A^{2}\right) \cdot V$.
True.
(b) Let $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ be a linear transformation with standard matrix representation A. The image under $T \circ T \circ T$ of an n-box in \mathbf{R}^{n} of volume V is a box in \mathbf{R}^{n} of volume $\operatorname{det}\left(A^{3}\right) \cdot V$.
False. The volume-change factor is $\left|\operatorname{det}\left(A^{3}\right)\right|$. We need the absolute value here since $\operatorname{det}\left(A^{3}\right)=\operatorname{det}(A)^{3}$ might be negative.
(c) If \mathbf{v} is an eigenvector of an invertible matrix A, then $c \mathbf{v}$ is an eigenvector of A^{-1} for all non-zero scalars c.
True. If \mathbf{v} is an eigenvector of A with corresponding eigenvalue λ, then we have seen previously that $A^{-1} \mathbf{v}=\lambda^{-1} \mathbf{v}$. Then $A^{-1} c \mathbf{v}=\lambda^{-1} c \mathbf{v}$, so $c \mathbf{v}$ is an eigenvector of A^{-1} for all non-zero scalars c.
(d) If λ is an eigenvalue of a matrix A, then λ is an eigenvalue of $A+c I$ for all scalars c.
False. We have seen that $\lambda+c$ is an eigenvalue of $A+c I$.
(e) If A is a 3×3 matrix with characteristic polynomial $p(\lambda)=(\lambda-2)^{2}(\lambda-3)$, then there is at most one non-zero vector \mathbf{v} such that $A \mathbf{v}=3 \mathbf{v}$.
False.
(f) If \mathbf{R}^{n} has a basis consisting of eigenvectors of an $n \times n$ matrix A, then A is diagonalizable.
True.
(g) If A and B are similar matrices, then $\operatorname{det} A=\operatorname{det} B$.

True.
(h) If an $n \times n$ matrix A is diagonalizable, then there is a unique diagonal matrix D that is similar to A.
False. D is not unique.
(i) If A is any $n \times n$ matrix, then the determinant of A is equal to the product of the diagonal entries in A.
False. If A is not a diagonal matrix, then the determinant of A is no necessarily equal to the product of its diagonal entries.
(j) If an $n \times n$ matrix A does not have n distinct eigenvalues, then A is not diagonalizable.
False.

Bonus (10 points). Recall that the Fibonacci sequence is given by $F_{0}=0, F_{1}=1$, and $F_{n}=F_{n-1}+F_{n-2}$ for $n \geq 2$. Find a closed-form formula for F_{n} in terms of n.

