Math 224
 Some Important Information about Diagonalization

Let A be an $n \times n$ matrix, and let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ be (possibly complex) scalars and let $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{n}}$ be non-zero vectors in n-space (n-space means either \mathbf{R}^{n} or \mathbf{C}^{n}). Let C be the $n \times n$ matrix having $\mathbf{v}_{\mathbf{j}}$ as j-th column vector, and let D be the $n \times n$ matrix having the λ_{i} on the main diagonal and 0 's elsewhere.

An $n \times n$ matrix A is diagonalizable if there exists an invertible matrix C such that $C^{-1} A C=D$, where D is some diagonal matrix. We say that the matrix C diagonalizes the matrix A.

Our goal: given a matrix A, decide whether or not A is diagonalizable, and if so, find matrices C and D such that

$$
C^{-1} A C=D
$$

Note that if we can find such matrices C and D, then $A=C D C^{-1}$ and

$$
A^{k}=C D^{k} C^{-1}
$$

which is a useful result since computing powers of a diagonal matrix is easy.

1. $A C=C D$ if and only if $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ are eigenvalues of A with corresponding eigenvectors $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{n}}$.
2. Note that if C is invertible, then we can rewrite $A C=C D$ as $C^{-1} A C=D$, which was our original goal!! So, now our question is, when will C be invertible?
3. So, let's suppose that A has n eigenvectors and eigenvalues, and construct the matrices C and D using the eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ and eigenvectors $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}$, $\ldots, \mathbf{v}_{\mathbf{n}}$.
4. From the previous two statements, we know that A is diagonalizable if the rank of C is equal to n (i.e. C is invertible).
5. Equivalently, A is diagonalizable if the n eigenvectors of A that we have used to create C are independent.
6. So now, our question becomes: given a matrix A, when can we find n independent eigenvectors of A ?
7. If $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{n}}$ are eigenvectors of A corresponding to distinct eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$, then the eigenvectors are independent, so A is diagonalizable.
8. Note that the previous statement does NOT imply that if A does not have distinct eigenvalues, then we can't find n independent eigenvectors. The theorem just says that if the eigenvalues are distinct, then we are guaranteed that the corresponding eigenvectors are independent.
9. (Complete during/after class today). State the algebraic/geometric multiplicity criterion for A to be diagonalizable.
10. (Complete during/after class today). State the result about diagonalization of real symmetric matrices.
