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Abstract

In [1], Fitting showed that the standard hierarchy of logics of justified knowl-
edge is conservative (e.g. a logic with positive introspection operator ! is con-
servative over the logic without !). We do the same with most logics of justified
belief, showing both conservation of sequent proofs and extensibility of models.
A brief example shows that conservativity does not hold for logics of justified
consistent belief.
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1. Introduction

In [1], Fitting showed conservativity of logics of justified knowledge, includ-
ing JT, JT4 (also known as LP), and JT45 as well as many weaker logics.
His proof showed something stronger than simple conservation of validity; he
showed that simple omission of symbols missing in the smaller language, care-
fully done, leads to a line-by-line translation of all Hilbert-style proofs in the
stronger logic into proofs in the weaker one. He observed that his method did
not extend to logics of justified belief (such as J and J4) and left the question
of conservativity in these logics open.

As Fitting noted, approaches to conservativity in logics of justified belief
rooted in Hilbert-style deduction do not work out easily. However, an approach
based on cut-free sequent proofs works almost effortlessly. One can also take a
semantic approach, extending models of the smaller logic to those of the larger.
In what follows, I will outline the basic definitions of logics of justified belief
and a simple semantics for these. I will then present two arguments in detail for
the conservativity of J4 over J, one syntactic and one semantic, then outline
others in broad strokes. After an example showing the lack of conservativity of
JD4 over JD, I will close with a few comments on open problems.

2. Preliminaries

Modal logic has long been a way of attempting to formalize the idea of
knowledge and belief (among other concepts). What separates knowledge from
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“mere” belief is the truth of what is known, reflected in the modal axiom scheme
T (2F → F ). I will assume the reader is familiar with the modal logics of belief
(the basic normal modal logic K with or without the assumption of positive
introspection 2F → 22F ). I will deal later with the deontic axiom D and its
explicit counterpart, which insist on the consistency of belief.

In a series of papers ([2], [3], [4] and others), Sergei Artemov defined the
Logic of Proofs (LP), partially as a solution to an open problem dating back to
Gödel ([5]) regarding the proper interpretation of the S4 modality as arithmetic
proof. However, LP proved useful and interesting well beyond answering Gödel’s
question, as a general way to make reasoning about knowledge explicit. Many
variations of Artemov’s original LP have appeared over the last decade or so,
and have come under the common heading of justification logics.

Why “justification” logics? Because in each of these systems, we augment
propositional logic with justification terms which are intended to make explicit
the reasons for knowing/believing a particular proposition. In a formula t :F ,
the justification term t makes explicit the reasons for asserting that formula F
(which may itself contain nested justification terms) is known/believed.

I will limit myself to fairly standard justification logics without truth axioms
(the analog of the modal axiom T), and in the next section will briefly define
languages and axiom systems for these. In the two sections that follow, I will
show that both a syntactic approach (based on sequent calculi) and a semantic
approach will serve to show the conservativity results we are pursuing. The
final section will be a very brief exploration of logics of consistent belief, with a
simple example showing that conservativity does not hold in these cases.

2.1. Languages
As mentioned several times above, we will be examining several logics of

justified belief, which will differ in the richness of their language. All logics
of justified belief contain justification terms, which include justification vari-
ables x1, x2, . . . and justification constants c1, c2, . . .. In addition, a particular
language may contain one or more of the following symbols for operations on
justification terms:

• · (binary)

• + (binary)

• ! (unary)

The intended meanings of these symbols are as follows:

• · is known as “application,” the idea being that if s is a justification for
believing F → G and t is a justification for believing F , then s · t is a
justification for believing G;

• + is known as “sum,” sort of a concatenation of justifications, the idea
being that s+ t is justification for believing anything justified either by s
or by t;
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• ! is used to represent positive introspection,1 so that if t is the justification
for believing F , then !t is the justification for believing that t is justification
for believing F .

We will limit ourselves to ·, +, and !, since the negative introspection oper-
ator ? is a recent addition to the literature and the history of results involving
the other operators is substantially richer; in addition, negative introspection
presents difficulties for reasons mentioned in the concluding section of this pa-
per.

We will define formulas as being built from atomic propositions P1, P2, . . .,
the propositional constant ⊥ and the implication operator → in the usual way;
in addition, given any formula F and justification term t, we will allow the
formula t :F .

Following Fitting ([1]), as I will for much of the following section, I will adopt
the notation L(S) (where S is a subset of {·,+, !}) to indicate the language
where only justification operations from S are permitted, and B(S) to indicate
the logic of justified belief based on L(S).

2.2. Logics, Axiomatically
Of course languages with different sets of justification operators will have

different collections of axioms to govern the behavior of those operators.

• All justification logics include a propositionally complete set of classical
axiom schemes.

• If · ∈ S, include the axiom scheme s : (F → G) → (s :F → (s · t) :G) in
B(S).

• If + ∈ S, include the axiom schemes s :F → (s+t) :F and t :F → (s+t) :F
in B(S).

• If ! ∈ S, include the axiom scheme t :F →!t : t :F in B(S).

All justification logics share the rule modus ponens (from F → G and F
conclude G), but they differ in their treatment of constants. Quoting Fitting,
“Constant symbols are intended to serve as justification of truths we cannot
further analyze, but our ability to analyze is dependent on available machinery.”
Thus, variations in the rules governing constants.

• The Axiom Necessitation Rule: If A is an axiom an c is a constant, then
c :A is a theorem.

• The Iterated Axiom Necessitation Rule: If A is an axiom and c1, c2, . . . , cn
are constants, then cn :cn−1 : · · · :c2 :c1 :A is a theorem.

1Also known as “proof checker” in the context of the Logic of Proofs.
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• The Theorem Necessitation Rule: If X is a theorem and c is a constant,
then c :X is a theorem.

If both · and ! are in S, then B(S) needs only the Axiom Necessitation Rule.
If S has · but lacks !, then B(S) requires the Iterated Axiom Necessitation Rule,
and if S lacks ·, then B(S) requires the Theorem Necessitation Rule.

Since {·,+, !} has eight subsets, we have just defined eight logics of justified
belief, but as far as I know, those lacking · have never been studied or found
any application. B({·,+}) is also known as J, the basic logic of justification
and B{·,+, !} is known as J4; both were defined by Brezhnev ([6]). Their
counterparts without + are known as J− and J4− and were defined by Fitting
in [7]. I will focus primarily on J and J4 for the rest of the paper, but the
techniques dealing with the presence/absence/addition of ! apply just as well to
+ and ·.

In what was just described above, each constant may serve as justification
for any axiom. One may also restrict the roles of various constants by means of
a constant specification, associating individual constants with sets of individual
instances of axioms. (In the case of the Iterated Axiom Necessitation rule, finite
sequences of constants are associated with sets of axiom instances, and in the
case of the Theorem Necessitation Rule constants are associated with sets of
theorems, of course.) When each constant is associated with all axioms, the
constant specification is called full.

For the rest of the paper, I will assume that my constant specifications
are schematic. In the context of Iterated Constant Necessitation, that means
that if a particular axiom A is in C(〈cn, cn−1, . . . , c2, c1〉) for some sequence cn,
cn−1, . . . , c2, c1 of justification constants, then so are all other instances of the
schema of which A is an instance. In other words, entire schemas are specified
by a particular sequence of justification constants.

Secondly, I will assume that any constants in J4 used to justify instances of
positive introspection (t :F →!t : t :F ) will be constants not acting as justification
for any other axiom schemes. This would be a corollary of having a schematically
injective constant specification.2 For the sake of simplicity, I will assume that
there is a single such constant and refer to it as c!.

2.3. Several Examples
Let us look at three proofs of the same proposition: y : (Q → R) → (P →

(P → P )). This is clearly a tautology, since it is of the form β → ϕ and
ϕ is itself a tautology. I am going to write out three proofs in some detail
because examining these proofs, and variants of these proofs, will help guide
and illustrate what is going on in the next section. To this end, I will specify
that I am considering the propositional schemes α → (β → α) and (α →

2In a schematically injective constant specification, each constant corresponds to either no
axioms at all or all instances of a single axiom schema.
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β) → (β → γ) → (α → γ) as axiomatic.3 I will also abbreviate the instance
P → (P → P ) of the first schema as ϕ for brevity in what follows.

Proof #1, which is straightforward:

1. P → (P → P ) = ϕ Axiom 1
2. ϕ→ (y : (Q→ R)→ ϕ) Axiom 1
3. y : (Q→ R)→ ϕ MP 1, 2

Proof #2, which is roundabout and makes essential use of positive intro-
spection:

1. P → (P → P ) = ϕ Axiom 1
2. ϕ→ (!y :y : (Q→ R)→ ϕ) Axiom 1
3. (!y :y : (Q→ R))→ ϕ MP 1, 2
4. y : (Q→ R)→!y :y : (Q→ R) Positive Introspection
5. (y : (Q→ R)→!y :y : (Q→ R))

→ ((!y :y : (Q→ R))→ ϕ)→ (y : (Q→ R)→ ϕ) Axiom 2
6. ((!y :y : (Q→ R))→ ϕ)→ (y : (Q→ R)→ ϕ) MP 4, 5
7. y : (Q→ R)→ ϕ MP 3, 6

Proof #3, which is roundabout makes inessential use of the ! operator:

1. P → (P → P ) = ϕ Axiom 1
2. ϕ→ ((!z :Q→ (y·!z) :R)→ ϕ) Axiom 1
3. (!z :Q→ (y·!z) :R)→ ϕ MP 1, 2
4. y : (Q→ R)→ (!z :Q→ (y·!z) :R) Application
5. y : (Q→ R)→ (!z :Q→ (y·!z) :R)

→ ((!z :Q→ (y·!z) :R)→ ϕ)→ (y : (Q→ R)→ ϕ) Axiom 2
6. ((!z :Q→ (y·!z) :R)→ ϕ)→ (y : (Q→ R)→ ϕ) MP 4, 5
7. y : (Q→ R)→ ϕ MP 3, 6

The difference between logics of justified belief and logics of justified knowl-
edge is that the latter contain a factivity or “truth” axiom (t :F )→ F . That is,
if we have a justified belief in F , then F must be true. This notion of justified
true belief as a definition for knowledge is ancient. For a wide-ranging discussion
related to Justification Logics, see [8] and many items cited in its references.

For our purposes, I would simply like to point out that there seems no
straightforward and uniform way to eliminate occurrences of ! in both axioms
like t :F →!t ! t :F and s : (F → G) → (!t :F → (s·!t) :G) in a logic of justified
belief, but if we are allowed truth axioms it is easy. If we simply eliminate any
justification term containing !, then the first item becomes the propositional
tautology t :F → t :F and the second becomes an instance of the truth axiom
s : (F → G)→ (F → G). This is the essence of Fitting’s approach in [1].

One can also “lift” these proofs and encode them into ground proof terms:
Proof #1 lifted:

3This is not standard but it makes for brief and illustrative examples.
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1. c1 : (P → (P → P )) = c1 :ϕ
2. c1 : (ϕ→ (y : (Q→ R)→ ϕ))
3. (c1 · c1) : (y : (Q→ R)→ ϕ)

Proof #2 lifted:

1. c1 : (P → (P → P )) = c1 :ϕ
2. c1 : (ϕ→ (!y :y : (Q→ R)→ ϕ))
3. (c1 · c1) : ((!y :y : (Q→ R))→ ϕ)
4. c! : (y : (Q→ R)→!y :y : (Q→ R))
5. c2 : ((y : (Q→ R)→!y :y : (Q→ R)))

→ ((!y :y : (Q→ R))→ ϕ)→ (y : (Q→ R)→ ϕ))
6. (c2 · c!)(((!y :y : (Q→ R))→ ϕ)→ (y : (Q→ R)→ ϕ))
7. ((c2 · c!) · (c1 · c1))(y : (Q→ R)→ ϕ)

Proof #3 lifted:

1. c1 : (P → (P → P )) = c1 :ϕ
2. c1 : (ϕ→ ((!z :Q→ (y·!z) :R)→ ϕ))
3. (c1 · c1) : ((!z :Q→ (y·!z) :R)→ ϕ)
4. c· : (y : (Q→ R)→ (!z :Q→ (y·!z) :R))
5. c2 : (y : (Q→ R)→ (!z :Q→ (y·!z) :R)

→ ((!z :Q→ (y·!z) :R)→ ϕ)→ (y : (Q→ R)→ ϕ))
6. (c2 · c·) : (((!z :Q→ (y·!z) :R)→ ϕ)→ (y : (Q→ R)→ ϕ))
7. ((c2 · c·) · (c1 · c1)) : (y : (Q→ R)→ ϕ)

Note that we are now proving three different propositions, as each is a lifting
of an essentially different proof. Note also the presence of c! and c· in the lifted
versions proof #2 and #3 to indicate the essential uses of the axioms for positive
introspection and application in the original versions of proof #2 and #3.

We will revisit all six of these proofs in the next section.

3. Sequent Proofs

I will draw on [4], essentially word-for-word, for a sequent formulation of
J4. The formulations of J4−, J and other weaker logics are obtained simply by
omission of the rules pertinent to the missing justification operators.

By sequent we mean a pair Γ =⇒ ∆ where Γ and ∆ are finite multisets of
J4 formulas. By Γ, F we will mean Γ ∪ {F}. We will assume a boolean basis
⊥, → and consider the other connectives to be defined in terms of these.

Axioms of J4G0 are sequents of the form Γ, F =⇒ F,∆ and Γ,⊥ =⇒ ∆.
Along with the usual Gentzen rules L→, R→ and contraction (see G2c in [9]),
the system J4G0 contains

Γ =⇒ ∆, s : (F → G) Γ =⇒ ∆, t :F
Γ =⇒ ∆, (s · t) :G

Γ =⇒ ∆, s :F
Γ =⇒ ∆, (s+ t) :F

Γ =⇒ ∆, t :F
Γ =⇒ ∆, (s+ t) :F
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Γ =⇒ ∆, t :F
Γ =⇒,∆, !t : t :F

Of course JG0 omits the last of these and J4G−0 omits the middle pair.
You may have noted that I did not mention cut among the “usual” Gentzen

rules. Although cut is certainly admissible, the cut-free calculus is sound and
complete ([4]) and in an unfortunate confluence of notation, the same superscript
− is used to denote both justification logics missing the + operator and cut-free
sequent calculi. I will try to avoid any possible confusion by using only cut-
free sequent calculi throughout the paper and reserving the superscript − for
justification logics without +.

Given a constant specification C, we may also add axioms of the form

Γ =⇒ ∆, cn : · · · :c1 :A

where cn : · · · :c1 :A ∈ C to form the calculus J4GC (or JGC etc.).4

3.1. Conservation of Sequent Proofs
It turns out that any J4GC proof of a formula in the language of J (that is,

!- and c!-free) is readily, almost trivially, convertible to a JGC proof. That the
conversion is nearly trivial depends on an observation, which in turn depends
on a definition.

We will define the :-depth of a particular occurrence of a justification term
t by induction:

• If t occurs in a formula of the form s : F

– If t occurs as a subterm of s then that occurrence of t has :-depth 0.

– If t occurs with :-depth n in the formula F , then the corresponding
occurrence of t within s :F is considered to be of depth n+ 1.

• If t occurs in a formula of the form F → G, then that occurrence of t has
the same :-depth in F → G as it had in F or in G.

With the notion of :-depth in mind, we can observe:

Proposition 3.1. In a J4GC cut-free sequent proof, if a justification term t
ever appears at :-depth 0, then t will be a subterm of a :-depth 0 justification
term in all sequents below the first appearance of that t.

4In Artemov’s formulation [4] the constant specification is expressed as rules of the form
Γ =⇒ ∆, A

Γ =⇒ ∆, cn : · · · :c1 :A
. This is much closer in spirit to the necessitation rule from modal logic

of which this is the analogue, but it will simplify our work to treat these steps of the proof as
axioms. This difference is not essential but aesthetic in both cases. It could, of course, affect
complexity, etc.
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This is immediate from inspection of the rules set forth earlier in this section.
Immediate in turn is:

Corollary 3.2. If a !- and c!-free sequent has a J4GC proof, that proof made
no use of the !-introduction rule or of an axiom of the form Γ =⇒ ∆, c! :A.

Given a formula F , let F ‡ be obtained from F by replacing all justification
terms !t and c! with the justification variable x.

A couple more statements of what I hope are obvious truths:

• If A in an instance of any J4 axiom other than positive introspection
(t :F →!t : t :F ), then it is an instance of a J axiom, though maybe not in
the language of J.

• If A is an instance of a J axiom containing the symbols ! or c!, then A‡ is
an instance of that same axiom.

Convincing oneself of the second item might require looking back at subsec-
tion 2.2 for a moment, but I do not believe it requires explicit proof.

So if we have a J4GC proof of a !- and c!-free sequent Γ =⇒ ∆, then that
same proof is also a JGC proof, though it may make inessential use of ! and c!.
Also, C is a J4-constant specification rather than a J one.

However, based on the above observations we can see that if we eliminate
all occurrences of ! and c! in the most simple-minded way possible, by replacing
every formula F occurring anywhere in the proof with F ‡, the JG sequent proof
will remain a JG sequent proof. Furthermore, if C was schematic, then we can
also take the restriction of C to the language of J in a similarly simple-minded
way, eliminating all instances of axiom schema which contain either ! or c!. If
we call this constant specification C‡, then our “sanitized” JG sequent proof is
now a JGC‡ proof, fully in the language of J.

Since formulas containing no occurrences of ! and c! are unaffected by the ‡
operation, we have argued for the following:

Theorem 3.3. If the !- and c!-free sequent Γ =⇒ ∆ has a J4GC deduction,
then that same deduction, modified by replacing each formula F occurring in the
deduction with F ‡, is a JGC‡ deduction of Γ =⇒ ∆.

An explicit proof of this would proceed by induction, but each step is obvious
from inspection of the sequent rules (and the fact that the !-introduction rule
was not used in the deduction). We will look at examples of this process in the
next subsection, and that might also convince the reader that everything that I
assert is clear really is so.

The theorem leads us to our first proof of the following corollary. (The
second will come in the next section.)

Corollary 3.4. If F is a !- and c!-free formula valid in J4 with constant spec-
ification C, then F is also valid in J with constant specification C‡.
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Finally, a note about constant specifications. While Iterated Constant Ne-
cessitation is not necessary in logics with positive introspection (!), it does no
harm to include it. So if we want C‡ to be appropriate for J, we would want to
include iterated constant necessitation in the original C, even though it was not
necessary in a J4 specification.

3.2. Examples Revisited
Let us revisit the three Hilbert-styles proofs of the proposition y : (Q →

R)→ (P → (P → P )) from subsection 2.3 and their lifted versions.
It turns out that if we want a cut-free sequent proof of y : (Q→ R)→ (P →

(P → P )), we are forced into the straightforward propositional one, the analog
of Proof #1. Without cut, we cannot take a roundabout approach. However,
things become more interesting when we look at the three propositions which
arose from the lifted versions of the three proofs:

• (c1 · c1) : (y : (Q→ R)→ ϕ)

• ((c2 · c!) · (c1 · c1))(y : (Q→ R)→ ϕ)

• ((c2 · c·) · (c1 · c1)) : (y : (Q→ R)→ ϕ)

We would need to find deductions of the sequents:

• =⇒ (c1 · c1) : (y : (Q→ R)→ ϕ)

• =⇒ ((c2 · c!) · (c1 · c1))(y : (Q→ R)→ ϕ)

• =⇒ ((c2 · c·) · (c1 · c1)) : (y : (Q→ R)→ ϕ)

Ignoring the structural rule of contraction5 we find that each of these must
have resulted from the sequent rule governing the behavior of ·.

In the first instance, the sequent proof is straightforward:

=⇒ c1 : (F → (y : (Q→ R)→ ϕ)) =⇒ c1 :F
(c1 · c1) : (y : (Q→ R)→ ϕ)

This necessitates finding a formula F such that F itself and F → (y : (Q→
R) → ϕ) are both instances of the axiom scheme α → (β → α). Fortunately
(and not coincidentally) ϕ itself fits the bill exactly and is our only option in
this exceedingly simple unification problem.

In the second instance, things get significantly more complicated. Our se-
quent proof must look like:

=⇒ c2 : (G→ F → y : (Q→ R)→ ϕ) =⇒ c! :G
=⇒ (c2 · c!) : (F → (y : (Q→ R)→ ϕ)

=⇒ c1 : (H → F ) =⇒ c1 :H
=⇒ (c1 · c1) :F

=⇒ ((c2 · c!) · (c1 · c1)) : (y : (Q→ R)→ ϕ)

5Which, in our case merely postpones and/or duplicates our work.

9



That is, we need to find F , G, and H so that G→ F → (y : (Q→ R)→ ϕ)
is an instance of the scheme (α → β) → (β → γ) → (α → γ), G is of the form
t :α→!t : t :α, and H → F and H are instances of the scheme α→ (β → α).

We are forced to make G be y : (Q → R) → (!y : y : (Q → R)), forcing F to
be !y :y : (Q→ R)→ ϕ, forcing H to be ϕ. Again, this all works out nicely and
deterministically.

Two related observations about this case: Because of the presence and place-
ment of the c! constant in the final sequent, this is not the sort of proof which
our theorem asserts can be converted to a JGC‡ proof. Also, if we had not
cast Axiom Necessitation as a sequent axiom but as a sequent rule (as is more
standard), above each sequent of the form (for example)

=⇒ c! : (y : (Q→ R)→ (!y :y : (Q→ R)))

we would have the sequent

=⇒ y : (Q→ R)→ (!y :y : (Q→ R))

which could only be deduced by use of the !-introduction sequent rule from J4G.
This illustrates more emphatically why such proofs cannot be converted to JG
proofs.

In the third instance, things are nearly identical. The only difference is that
now G must be an instance of s : (α → β) → (t : α) → (s · t) : β). We are
forced to let unify y : (Q → R) with s : (α → β), and all else about F and H
follows. However, we are left with the choice of an arbitrary t. We must choose
some value for t, but it is entirely immaterial to the rest of the proof. If we
happen to choose a value for t which contains the ! operator, we will have what
is essentially a JG deduction, but in the language of J4G. This is exactly the
circumstance in which converting G to G‡, converting whatever subterms of the
form !u occurred in t into the variable x, yields a pure JG proof.

4. A Semantic Approach

The original intended semantics for LP was arithmetic proofs, but a more
adaptable semantics was defined by Fitting in [7], generalizing the idea of Kripke
models for modal logics. We will not have need of the full strength of Fitting
models here, though, and will revert to an older semantics due to Mkrtychev
[10]. Mkrtychev models are essentially one-world Fitting models.

The first notion we will need is that of an evidence function, which is simply
any function E from justification terms in L(S) to sets of L(S) formulas. We
may impose additional conditions on E :

• If · is in S, we will insist that whenever F → G ∈ E(s) and F ∈ E(t) it is
also the case that G ∈ E(s · t).

• If + is in S, we will insist that E(s) ∪ E(t) ⊆ E(s+ t).
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• If ! is in S, we will insist that whenever F ∈ E(t), it is also the case that
t :F ∈ E(!t).

Finally, for an evidence function to be appropriate for a language L(S) and
a particular constant specification C in that language, it must behave properly
on constants.

• If · and ! are both in S, it must be that A ∈ E(c) for each axiom A ∈ C(c)
where c is a justification constant.

• If · is in S but ! is not in S, it must be that c2 : · · · : cn : A ∈ E(c1),
c3 : · · · : cn :A ∈ E(c2), . . . cn :A ∈ E(cn−1), and A ∈ E(cn) for each axiom
A ∈ C(〈c1, c2 . . . , cn〉) where c1, c2, . . . , cn are justification constants.
(n ≥ 1.)

• If S lacks ·, it must be that F ∈ E(c) for each theorem F ∈ C(c) where c
is a justification constant.

A (Mkrtychev) structure M for a language L(S) is a pair 〈E ,V〉 where E is
an evidence function appropriate to L(S) and V is a propositional valuation.

We will define satisfaction of a formula F in a structureM (writtenM  F )
as follows:

• M  P for propositional variable P if and only if V(P ) is true.

• M 1 ⊥.

• M  F → G if and only if either M 1 F or M  G.

• M  t :F if and only if F ∈ E(t).

Kuznets ([11]) proved the soundness and completeness of Mkrtychev models
for B({·,+}) and B({·,+, !}) (that is, J and J4). Essentially the same proof
goes through for ·-free and +-free logics of justified belief.

4.1. A Fuller Semantics
I will treat this only briefly, but Fitting in [7] combined Mkrtychev’s notion

of evidence function with Kripke frames to obtain a much more expressive se-
mantics. See [8] for a fuller treatment and an explanation of the relative merits
of Mkrtychev and Kripke-Fitting models. I will draw on Artemov’s exposition
but adapt the notation a little.

The basic idea is that we begin with a Kripke frame, a set W of possible
worlds and an accessibility relation R on these, and have an evidence function
E (as defined above) for each world. So instead of talking about F ∈ E(t), we
will have F ∈ E(t, w) for possible world w. Mkrtychev models would constitute
one-world Kripke-Fitting models with an empty accessibility relation.

The same closure conditions on evidence functions would pertain, but to say
that t :F holds at world w we would insist not only that F ∈ E(t, w) as before,
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but also that F holds at world v for all worlds v accessible from w (that is, with
wRv).

In addition to the closure under introspection (if F ∈ E(t, w) then t : F ∈
E(!t, w)) for logics with !, in such cases we would also require that R be transitive
(a condition familiar from Kripke models) and satisfy a monotonicity condition:
If F ∈ E(t, w) and wRv then F ∈ E(t, v).

4.2. Extension of Models
Another approach to showing the conservativity of J4 over J, and the one

taken in the preliminary version of this paper presented at LFCS 2009, is to
work with Mkrtychev models, showing that we can extend J models into J4
models. This is more work, but may well have application beyond the present
result.

Theorem 4.1. Let C be a constant specification in L({·,+}). Any Mkrtychev
modelM for J satisfying constant specification C can be extended to a J4 model
M′ satisfying C with M ⊆M′. Furthermore, exactly the same !-free formulas
are true in M′ as in M.

Proof. We begin with a Mkrtychev model M for J satisfying C. Recall that
this means that we have a propositional valuation V and an evidence function E
with the properties that E(s)∪E(t) ⊆ E(s+ t) and whenever F → G ∈ E(s) and
F ∈ E(t) it is also the case that G ∈ E(s · t). The handy thing about a semantic
approach logics of belief is that beliefs need not have anything to do with the
“real world” so we do not have to worry any further about our propositional
valuation V.

We will extend E to a J4-appropriate evidence function E ′ in stages. Because
we are leaving the constant specification alone, we need only one additional
property: that whenever F ∈ E ′(t) we also have t :F ∈ E ′(!t). (We essentially
taking the transitive closure of E .)

We will define En recursively, taking the closure under operations at succes-

sive stages. We can then set E ′ =
∞⋃

n=0

En.

We begin by setting E0 = E . Now we can define En+1.

• If c is a justification constant, En+1(c) = En(c).

• If x is a justification variable, En+1(x) = En(x).

• En+1(s+ t) = En(s+ t) ∪ En(s) ∪ En(t).

• En+1(s · t) = En(s · t) ∪ {G|F → G ∈ En(s) and F ∈ En(t)}.

• En+1(!t) = En(!t) ∪ {t :F |F ∈ En(t)}.

The only evidence for formulas containing the ! operator will be justification
terms which themselves contain !.
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Lemma 1. If t is !-free and F ∈ En(t), then F is !-free as well.

Proof. We will prove this by induction, and the base (n = 0) case is trivial,
since E0(t) = E(t) and E was an evidence function in a !-free language.

For the inductive step of the proof, let us assume that F ∈ Ek+1(t). If
F ∈ Ek(t) as well, we are finished by our inductive hypothesis. So let us assume
that F /∈ Ek(t). It is impossible by the definition of Ek+1 that t is a justification
constant or justification variable, so t is either u · v or u+ v. (Recall that t was
!-free.)

• If t = u · v, then there is some G with G→ F ∈ Ek(u) and G ∈ Ek(v). By
our inductive hypothesis, G→ F is !-free, so F will be as well.

• If t = u+ v, then either F ∈ Ek(u) or F ∈ Ek(v). In either case, we know
by our inductive hypothesis that F is !-free.

This ends the inductive argument and the proof of the first lemma.

Now we can get almost all of the way home with a second lemma.

Lemma 2. Let t and F be !-free. F ∈ E ′(t) if and only if F ∈ E(t).

Proof. That F ∈ E(t) implies F ∈ E ′(t) is immediate from the construction of
E ′.

To show the converse, we will prove that if F ∈ En(t) then F ∈ E(t) by
induction on n. Again, the base case is trivial.

For the induction, we may assume that if G ∈ Ek(s) then G ∈ E(s) for
all !-free pairs s and G. We wish to show that if F and t are !-free and F ∈
Ek+1(t) then F ∈ E(t). If F ∈ Ek(t), we are done immediately by our inductive
hypothesis. So let us examine the other possible cases:

• If t = u · v and there is G ∈ Ek(v) with G → F ∈ Ek(u). Because u · v is
!-free, we know by our earlier lemma that it is also the case that G → F
and G are !-free. By our inductive hypothesis, G→ F ∈ E(v) an G ∈ E(u).
Since E was an evidence function, it must be that F ∈ E(u · v).

• If t = u + v and F ∈ Ek(u), then by our inductive hypothesis, F ∈ E(u).
Because E was an evidence function, we know that E(u) ⊆ E(u + v), so
F ∈ E(u+ v). The case for F ∈ Ek(v) is identical.

This completes the induction and the proof of our second lemma.

It is clear from the definition of E ′ that it is an evidence function appropriate
to the logic J4, so we can define a J4 Mkrtychev model M′ = 〈E ′,V〉 where V
is the propositional valuation from our original J-model M. What remains to
be shown is that if F is a !-free formula, then M  F if and only if M′  F .
We can prove this by a very easy induction on the construction of F .

Because both M and M′ are built from the same propositional valuation
V the case for propositional variables is immediate, as is the case for ⊥. That
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M  t :G if and only if M′  t :G is immediate from the definition of  and
the second lemma above. The argument for F = G1 → G2 is standard and
straightforward.

Corollary 4.2. If F ∈ L({·,+}) is provable in J4 under constant specification
C, then F is provable in J under constant specification C.

Proof. By the completeness of Mkrtychev models for J, if F is not provable in J,
then there will be Mkrtychev model for J making F false. This will be extended
to a J4 model in which F is also false, showing that F was not provable in J4
by the soundness of Mkrtychev models.

Of course we do not want to hamstring ourselves with constant specifica-
tions for J4 which are entirely !-free. In particular, it would be good to have
conservativity hold for axiomatically appropriate constant specifications. With
a few reasonable conditions, we can generalize Theorem 4.1 to a broader class
of constant specifications.

Let C be a schematic constant specification for J4, and let C‡ be as defined
in section 3.1.

Note that while in section 3.1 we defined C‡ as a reduction of C, it is also
straightforward given any appropriate schematic constant specification for J
to extend it to an appropriate constant specification C for J4 such that C‡
is the original J specification. Also note that if we start with a C‡ which is
axiomatically appropriate and extend to C, C will be axiomatically appropriate
as well, though with unnecessary instances of iterated justification constants.

Theorem 4.3. Let C be a schematic constant specification for J4, and C‡ its
corresponding J specification. Any Mkrtychev modelM for J satisfying constant
specification C‡ can be extended to a J4 model M′ satisfying C with M ⊆M′.
Furthermore, exactly the same !- and c!-free formulas are true in M′ as in M.

Proof. The proof will be nearly identical in its outline to that of Theorem 4.1,
but there will be one small change to the construction of the extension E ′ of the
evidence relation E , entailing some extra work in the lemmas.

As above, we begin with a Mkrtychev modelM for J which respects the con-
stant specification C‡, consisting of a propositional valuation V and an evidence
function E .

This time when we extend E to a J4-appropriate evidence function E ′ we
will need two additional properties: First, we need to extend the behavior of
constants in E to include axioms from L({·,+, !}), and as before we need it to
be the case that whenever F ∈ E ′(t) we also have t :F ∈ E ′(!t).

We will again define En recursively, treating constants at the initial stage

and closure under operations at successive stages. We can still set E ′ =
∞⋃

n=0

En.

We begin with E0.

• If t is not a justification constant, let E0(t) = E(t).
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• If c is a justification constant, let E0(c) = E(c) ∪ C(c)

Now we can define En+1 exactly as in Theorem 4.1.

• If c is a justification constant, En+1(c) = En(c).

• If x is a justification variable, En+1(x) = En(x).

• En+1(s+ t) = En(s+ t) ∪ En(s) ∪ En(t).

• En+1(s · t) = En(s · t) ∪ {G|F → G ∈ En(s) and F ∈ En(t)}.

• En+1(!t) = En(!t) ∪ {t :F |F ∈ En(t)}.

At this point, we will need a somewhat more complicated version of Lemma
1.

Revised Lemma 1. If t is !- and c!-free, then if F ∈ En(t), we have (F )‡ ∈
En(t) as well.

Proof. We will prove this, of course, by induction. First, for n = 0. If t is not a
justification constant and F ∈ E0(t), then F ∈ E(t). Because E was the evidence
function for a J-model in a language without ! or c!, we know that F is !- and
c!-free, meaning that (F )‡ is identical to F . A similar argument works in the
case that t is a justification constant and F ∈ E(c).

To complete the base case of the induction, we need to show that if F ∈ C(c),
(F )‡ ∈ C(c) as well. That is, we need to show that if F is an instance of a J4
axiom schema other than positive introspection (recall that c 6= c!) then (F )‡

is also an instance of that same schema. However, this is immediate from the
fact that ‡ leaves intact all instances of the justification operators · and + and
all propositional connectives. (For example, (s+ t :G)‡ = (s)‡ + (t)‡ : (G)‡.)

For the inductive step of the proof, let us assume that F ∈ Ek+1(t). If
F ∈ Ek(t) as well, we are finished by our inductive hypothesis. So let us assume
that F /∈ Ek(t). It is impossible by the definition of Ek+1 that t is a justification
constant or justification variable, so t is either u · v or u+ v. (Recall that t was
!- and c!-free.)

• If t = u · v, then there is some G with G→ F ∈ Ek(u) and G ∈ Ek(v). By
our inductive hypothesis, (G→ F )‡ ∈ Ek(u) and (G)‡ ∈ Ek(v). Since ‡ is
not concerned with propositional connectives, (G → F )‡ = (G)‡ → (F )‡.
Since we have (G)‡ ∈ Ek(v) and (G)‡ → (F )‡ ∈ Ek(u), the definition of
Ek+1 tells us that (F )‡ ∈ Ek+1(u · v).

• If t = u + v, then either F ∈ Ek(u) or F ∈ Ek(v). By our inductive
hypothesis, (F )‡ ∈ Ek(u) or (F )‡ ∈ Ek(v). By the definition of Ek+1,
(F )‡ ∈ Ek+1(u+ v).

This ends the inductive argument and the proof of the first lemma.
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The complexities of the first lemma lead to a few changes in the proof of
second lemma as well.

Revised Lemma 2. Let t and F be !- and c!-free. F ∈ E ′(t) if and only if
F ∈ E(t).

Proof. That F ∈ E(t) implies F ∈ E ′(t) is again immediate from the construc-
tion of E ′.

To show the converse, we will as usual prove that if F ∈ En(t) then F ∈ E(t)
by induction on n.

If t is not a justification constant, then E0(t) = E(t). If t is a justification
constant c 6= c!, C‡ and C agree on F by the definition of C‡. (Recall that F was
!- and c!-free.) Thus, if F ∈ E0(t) then F ∈ E(t).

Now we may assume that if G ∈ Ek(s) then G ∈ E(s) for all !- and c!-
free pairs s and G. We wish to show that if F and t are !- and c!-free and
F ∈ Ek+1(t) then F ∈ E(t). If F ∈ Ek(t), we are done immediately by our
inductive hypothesis. So let us examine the other possible cases:

• If t = u · v and there is G ∈ Ek(v) with G → F ∈ Ek(u). Because u · v
is !- and c!-free, we know by our earlier lemma that it is also the case
that (G)‡ ∈ Ek(v) and (G → F )‡ ∈ Ek(u). Because we can move ‡ past
propositional connectives, and because F is !- and c!-free, we know that
(G → F )‡ = (G)‡ → (F )‡ = (G)‡ → F . Thus, we have (G)‡ ∈ Ek(v)
and (G)‡ → F ∈ Ek(u). By our inductive hypothesis, (G)‡ ∈ E(v) and
(G)‡ → F ∈ E(u). Because E was an evidence function for a Mkrtychev
model for J, it must be the case that F ∈ E(u · v).

• If t = u + v and F ∈ Ek(u), then by our inductive hypothesis, F ∈ E(u).
Because E was an evidence function, we know that E(u) ⊆ E(u + v), so
F ∈ E(u+v). The case for F ∈ Ek(v) is identical. (This case is unchanged
from the original version of the lemma.)

This completes the induction and the proof of our second lemma.

The remainder of the proof of the current theorem is both standard and
identical with the end of the proof of Theorem 4.1.

We again get a corollary nearly for free:

Corollary 4.4. If F ∈ L({·,+}) and containing no instances of c! is provable
in J4 under constant specification C, then F is provable in J under constant
specification C‡.

Similar proofs work to show the conservativity of, say, J4 over J4− (the +-
free fragment of J4). (In fact, the proofs of conservativity over +-free fragments
have much less need for equivocation about constant specifications.) The only
substantial differences would come in the inductive steps of the lemmas.

For example, in the (revised) first lemma, we would need the following ar-
gument (for J4 over J4−, assuming that (F )− was defined analogously with
(F )‡):
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• If t =!s, then F = s : G and G ∈ Ek(s). By our inductive hypothesis6

we know that (G)− ∈ Ek(s) as well. Because t was +-free, so is s, so
(s :G)− = s : (G)−. Because (G)− ∈ Ek(s), s : (G)− ∈ Ek+1(!s), and so
(s :G)− ∈ Ek+1(!s).

And in the second:

• If t =!s and F = s :G for some G ∈ Ek(s), then we know by our inductive
hypothesis7 that G ∈ E(s). Because E was a J4−-appropriate evidence
function, it must be that s :G ∈ E(!s).

The interested reader can work out details for other cases.

5. Consistent Belief

What we have been examining so far could be called the logic of “pure normal
belief” (with or without positive introspection). From a modal standpoint,
the only axioms are 2(F → G) → 2F → 2G and possibly 2F → 22F .
No other constraints are placed on what is believed. In logics of knowledge,
consistency of belief is automatic because things believed/known are also true,
and no inconsistency can be true. However, one can fairly simply mandate
consistency of beliefs without requiring that all which is believed be true. The
modal axiom D (from the word deontic8) ((2⊥)→ ⊥) accomplishes this. This
can also be introduced in logics of justified belief as the axiom scheme (t :⊥)→
⊥.

In a way, insisting on consistent belief can be seen as a middle ground be-
tween unconstrained (normal) belief and knowledge. This makes it surprising
that while J4 is conservative over J and JT4 over JT, it is not the case that
JD4 is conservative over JD. In particular, introspection can introduce incon-
sistencies in otherwise consistent belief systems.

The potential that introspection has for havoc can be seen from a simple
example. I might both believe that the sky is blue and believe that I do not
believe that the sky is blue. (This could be expressed as x : P and y : ((x :
P )→ ⊥).) Absent positive introspection, I can hold both these beliefs. But in
the presence of positive introspection (and application), an inconsistent belief
appears. (From x :P deduce !x :x :P , and by application (y·!x) :⊥.)

The same example works in the absence of the operator +. I have not
explored the conservativity of JD over JD− or of JD4 over JD4−.

6Having, of course, to do with +-free justification terms and formulas (G)− which have
had the +-terms stripped out.

7Again, this would be a different hypothesis than in our original version of the lemma.
8The word deontic denotes a connection to duty or obligation. The more common form

of the axiom D is 2F → 3F , which could be interpreted as “What is mandatory is also
permitted.” In normal modal logics, this scheme is equivalent to our formulation.
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6. Conclusion and Acknowledgments

In Fitting’s proof of conservativity for logics of knowledge [1], he showed that
not only conclusions but entire proofs could be preserved by careful elimination
of justification operators. However, his reduction relied heavily on the presence
of the truth axiom (t :F → F ) and its variants. For example, if we were trying
to eliminate occurrences of ! from a proof, and the justification term t contained
! (while u did not), the axiom u :F → (t + u) :F would become u :F → F , an
instance of the truth axiom.

Thus, one problem clearly still open in this area is the existence or impossi-
bility of uniform direct translations of Hilbert-style proofs in a stronger logic of
belief to those in a weaker logic of belief.

We will also note here with the briefest of examples that the näıve world-
by-world application of our extension of evidence functions does not work in
general for multi-world Kripke-Fitting models as defined in Section 4.1. If W
consists of two worlds u and v, and the accessibility relation R = {〈u, v〉}, if
P ∈ E(t, u) and P /∈ E(t, v) then we run into trouble with whether !t : t : P
should be true at u. Our definition of E ′ would put t :P into E ′(!t, u), but for
!t : t :P to be true at u we should also have t :P true at v since v is accessible
from u. It may be that a subtler definition of E ′ would work, but that has not
been explored, to the best of my knowledge. 9

Also still open is conservativity of logics of belief with the negative introspec-
tion (?) operator. Because the semantic arguments in the present paper relied
heavily on the monotonicity of the construction of the extension of evidence
relations, they would seem incompatible with negative introspection. I am not
aware of a straightforward cut-free sequent calculus for logics of justified belief
incorporating negative introspection.

Finally, my thanks to the organizers of Logical Foundations of Computer
Science 2009 both for the opportunity to present the preliminary version of this
paper and for their work in arranging for this special issue of APAL.
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