Tests for Convergence of Series

1) Use the comparison test to confirm the statements in the following exercises.

1. \(\sum_{n=4}^{\infty} \frac{1}{n} \) diverges, so \(\sum_{n=4}^{\infty} \frac{1}{n-3} \) diverges.

Answer: Let \(a_n = 1/(n-3) \), for \(n \geq 4 \). Since \(n-3 < n \), we have \(1/(n-3) > 1/n \), so

\[
a_n > \frac{1}{n}.
\]

The harmonic series \(\sum_{n=4}^{\infty} \frac{1}{n} \) diverges, so the comparison test tells us that the series \(\sum_{n=4}^{\infty} \frac{1}{n-3} \) also diverges.

2. \(\sum_{n=1}^{\infty} \frac{1}{n^2} \) converges, so \(\sum_{n=1}^{\infty} \frac{1}{n^2+2} \) converges.

Answer: Let \(a_n = 1/(n^2+2) \). Since \(n^2+2 > n^2 \), we have \(1/(n^2+2) < 1/n^2 \), so

\[
0 < a_n < \frac{1}{n^2}.
\]

The series \(\sum_{n=1}^{\infty} \frac{1}{n^2} \) converges, so the comparison test tells us that the series \(\sum_{n=1}^{\infty} \frac{1}{n^2+2} \) also converges.

3. \(\sum_{n=1}^{\infty} \frac{1}{n^2} \) converges, so \(\sum_{n=1}^{\infty} \frac{e^{-n}}{n^2} \) converges.

Answer: Let \(a_n = e^{-n}/n^2 \). Since \(e^{-n} < 1 \), for \(n \geq 1 \), we have \(\frac{e^{-n}}{n^2} < \frac{1}{n^2} \), so

\[
0 < a_n < \frac{1}{n^2}.
\]

The series \(\sum_{n=1}^{\infty} \frac{1}{n^2} \) converges, so the comparison test tells us that the series \(\sum_{n=1}^{\infty} \frac{e^{-n}}{n^2} \) also converges.

2) Use the comparison test to determine whether the series in the following exercises converge.

1. \(\sum_{n=1}^{\infty} \frac{1}{3^n+1} \)

Answer: Let \(a_n = 1/(3^n+1) \). Since \(3^n + 1 > 3^n \), we have \(1/(3^n+1) < 1/3^n = (1/3)^n \), so

\[
0 < a_n < \left(\frac{1}{3}\right)^n.
\]

Thus we can compare the series \(\sum_{n=1}^{\infty} \frac{1}{3^n+1} \) with the geometric series \(\sum_{n=1}^{\infty} \left(\frac{1}{3}\right)^n \). This geometric series converges since \(|1/3| < 1 \), so the comparison test tells us that \(\sum_{n=1}^{\infty} \frac{1}{3^n+1} \) also converges.

2. \(\sum_{n=1}^{\infty} \frac{1}{n^4+e^n} \)

Answer: Let \(a_n = 1/(n^4+e^n) \). Since \(n^4 + e^n > n^4 \), we have

\[
\frac{1}{n^4+e^n} < \frac{1}{n^4},
\]

so

\[
0 < a_n < \frac{1}{n^4}.
\]

Since the \(p \)-series \(\sum_{n=1}^{\infty} \frac{1}{n^4} \) converges, the comparison test tells us that the series \(\sum_{n=1}^{\infty} \frac{1}{n^4+e^n} \) also converges.

3. \(\sum_{n=2}^{\infty} \frac{1}{\ln n} \)

Answer: Since \(\ln n \leq n \) for \(n \geq 2 \), we have \(1/\ln n \geq 1/n \), so the series diverges by comparison with the harmonic series, \(\sum 1/n \).
4. \(\sum_{n=1}^{\infty} \frac{n^2}{n^4 + 1} \)
Answer: Let \(a_n = \frac{n^2}{n^4 + 1} \). Since \(n^4 + 1 > n^4 \), we have \(\frac{1}{n^4 + 1} < \frac{1}{n^4} \), so
\[a_n = \frac{n^2}{n^4 + 1} < \frac{n^2}{n^4} = \frac{1}{n^2}, \]
therefore
\[0 < a_n < \frac{1}{n^2}. \]
Since the \(p \)-series \(\sum_{n=1}^{\infty} \frac{1}{n^2} \) converges, the comparison test tells us that the series \(\sum_{n=1}^{\infty} \frac{n^2}{n^4 + 1} \) converges also.

5. \(\sum_{n=1}^{\infty} \frac{n \sin^2 n}{n^4 + 1} \)
Answer: We know that \(n \sin^2 n \) is bounded, so
\[\frac{n \sin^2 n}{n^4 + 1} \leq \frac{n}{n^4 + 1} < \frac{n}{n^4} = \frac{1}{n^3}. \]
Since the \(p \)-series \(\sum_{n=1}^{\infty} \frac{1}{n^3} \) converges, comparison gives that \(\sum_{n=1}^{\infty} \frac{n \sin^2 n}{n^4 + 1} \) converges.

6. \(\sum_{n=1}^{\infty} \frac{2^n + 1}{n^2 \sin n} \)
Answer: Let \(a_n = \frac{2^n + 1}{n^2 \sin n} \). Since \(2^n - 1 < 2^n + n = n(2^n + 1) \), we have
\[\frac{2^n + 1}{2^n n^2} > \frac{2^n + 1}{n(2^n + 1)} = \frac{1}{n}. \]
Therefore, we can compare the series \(\sum_{n=1}^{\infty} \frac{2^n + 1}{n^2 \sin n} \) with the divergent harmonic series \(\sum_{n=1}^{\infty} \frac{1}{n} \). The comparison test tells us that \(\sum_{n=1}^{\infty} \frac{2^n + 1}{n^2 \sin n} \) also diverges.

3) Use the ratio test to decide if the series in the following exercises converge or diverge.

1. \(\sum_{n=1}^{\infty} \frac{1}{(2n)!} \)
Answer: Since \(a_n = 1/(2n)! \), replacing \(n \) by \(n + 1 \) gives \(a_{n+1} = 1/(2n + 2)! \). Thus
\[\frac{|a_{n+1}|}{|a_n|} = \frac{(2n)!}{(2n + 2)!} = \frac{(2n)!}{(2n + 2)(2n + 1)(2n)!} = \frac{1}{(2n + 2)(2n + 1)}, \]
so
\[L = \lim_{n \to \infty} \frac{|a_{n+1}|}{|a_n|} = \lim_{n \to \infty} \frac{1}{(2n + 2)(2n + 1)} = 0. \]
Since \(L = 0 \), the ratio test tells us that \(\sum_{n=1}^{\infty} \frac{1}{(2n)!} \) converges.

2. \(\sum_{n=1}^{\infty} \frac{(n!)^2}{(2n)!} \)
Answer: Since \(a_n = (n!)^2/(2n)! \), replacing \(n \) by \(n + 1 \) gives \(a_{n+1} = ((n + 1)!)^2/(2n + 2)! \). Thus,
\[\frac{|a_{n+1}|}{|a_n|} = \frac{(n+1)!^2(2n)!}{(2n + 2)(2n + 1)(2n)!} = \frac{(n+1)!^2}{(2n + 2)(2n + 1)} \cdot \frac{2n!}{(n!)^2}. \]
However, since \((n + 1)! = (n + 1)n! \) and \((2n + 2)! = (2n + 2)(2n + 1)(2n)! \), we have
\[\frac{|a_{n+1}|}{|a_n|} = \frac{(n+1)^2(n!)^2(2n)!}{(2n + 2)(2n + 1)(2n)!} = \frac{(n+1)^2}{(2n + 2)(2n + 1)} = \frac{n + 1}{4n + 2}, \]
so
\[L = \lim_{n \to \infty} \frac{|a_{n+1}|}{|a_n|} = \frac{1}{4}. \]
Since \(L < 1 \), the ratio test tells us that \(\sum_{n=1}^{\infty} \frac{(n!)^2}{(2n)!} \) converges.
3. \(\sum_{n=1}^{\infty} \frac{(2n)!}{n!(n+1)!} \)

Answer: Since \(a_n = (2n)!/(n!(n+1)!) \), replacing \(n \) by \(n + 1 \) gives \(a_{n+1} = (2n+2)!/((n+1)!(n+2)!) \). Thus,

\[
\left| \frac{a_{n+1}}{a_n} \right| = \frac{(2n+2)!}{(n+1)!(n+2)!} \cdot \frac{n!(n+1)!}{(2n)!}.
\]

However, since \((n+2)! = (n+2)(n+1)n! \) and \((2n+2)! = (2n+2)(2n+1)(2n)! \), we have

\[
\left| \frac{a_{n+1}}{a_n} \right| = \frac{(2n+2)(2n+1)}{(n+2)(n+1)} \cdot \frac{2n+1}{2n+2},
\]

so

\[
L = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = 4.
\]

Since \(L > 1 \), the ratio test tells us that \(\sum_{n=1}^{\infty} \frac{(2n)!}{n!(n+1)!} \) diverges.

4. \(\sum_{n=1}^{\infty} \frac{1}{r^n} \), \(r > 0 \)

Answer: Since \(a_n = 1/(r^n n!) \), replacing \(n \) by \(n + 1 \) gives \(a_{n+1} = 1/(r^{n+1}(n+1)!) \). Thus

\[
\left| \frac{a_{n+1}}{a_n} \right| = \frac{1}{r} \frac{n+1}{n} \cdot \frac{1}{r} \frac{n}{n-1} = \frac{1}{r^{n+1}(n+1)!
\]

so

\[
L = \lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \frac{1}{r} \lim_{n \to \infty} \frac{1}{n+1} = 0.
\]

Since \(L = 0 \), the ratio test tells us that \(\sum_{n=1}^{\infty} \frac{1}{r^n} \) converges for all \(r > 0 \).

5. \(\sum_{n=1}^{\infty} \frac{1}{n e^n} \)

Answer: Since \(a_n = 1/(n e^n) \), replacing \(n \) by \(n + 1 \) gives \(a_{n+1} = 1/(n+1)e^{n+1} \). Thus

\[
\left| \frac{a_{n+1}}{a_n} \right| = \frac{1}{n+1} \frac{1}{e^{n+1}} = \frac{ne^n}{(n+1)e^{n+1}} = \left(\frac{n}{n+1} \right) \frac{1}{e}.
\]

Therefore

\[
L = \lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \frac{1}{e} < 1.
\]

Since \(L < 1 \), the ratio test tells us that \(\sum_{n=1}^{\infty} \frac{1}{n e^n} \) converges.

6. \(\sum_{n=0}^{\infty} \frac{2^n}{n^3+1} \)

Answer: Since \(a_n = 2^n/(n^3 + 1) \), replacing \(n \) by \(n + 1 \) gives \(a_{n+1} = 2^{n+1}/((n+1)^3 + 1) \). Thus

\[
\left| \frac{a_{n+1}}{a_n} \right| = \frac{2^{n+1}}{(n+1)^3 + 1} \cdot \frac{n^3 + 1}{2^n} = \frac{2^{n+1}}{n^3 + 1} \cdot \frac{n^3 + 1}{2^n} = \frac{2^{n+1}}{(n+1)^3 + 1},
\]

so

\[
L = \lim_{n \to \infty} \frac{a_{n+1}}{a_n} = 2.
\]

Since \(L > 1 \) the ratio test tells us that the series \(\sum_{n=0}^{\infty} \frac{2^n}{n^3+1} \) diverges.

4) Use the integral test to decide whether the following series converge or diverge.

1. \(\sum_{n=1}^{\infty} \frac{1}{n^3} \)

Answer: We use the integral test with \(f(x) = 1/x^3 \) to determine whether this series converges or diverges.

We determine whether the corresponding improper integral \(\int_1^{\infty} \frac{1}{x^3} dx \) converges or diverges:

\[
\int_1^{\infty} \frac{1}{x^3} dx = \lim_{b \to \infty} \int_1^b \frac{1}{x^3} dx = \lim_{b \to \infty} \left[-\frac{1}{2x^2} \right]_1^b = \lim_{b \to \infty} \left(-\frac{1}{2b^2} + \frac{1}{2} \right) = \frac{1}{2}.
\]

Since the integral \(\int_1^{\infty} \frac{1}{x^3} dx \) converges, we conclude from the integral test that the series \(\sum_{n=1}^{\infty} \frac{1}{n^3} \) converges.
2. \(\sum_{n=1}^{\infty} \frac{n}{n^2 + 1} \)

Answer: We use the integral test with \(f(x) = \frac{x}{x^2 + 1} \) to determine whether this series converges or diverges.

We determine whether the corresponding improper integral \(\int_{1}^{\infty} \frac{x}{x^2 + 1} \, dx \) converges or diverges:

\[
\int_{1}^{\infty} \frac{x}{x^2 + 1} \, dx = \lim_{b \to \infty} \int_{1}^{b} \frac{x}{x^2 + 1} \, dx = \lim_{b \to \infty} \frac{1}{2} \ln(x^2 + 1) \bigg|_{1}^{b} = \lim_{b \to \infty} \left(\frac{1}{2} \ln(b^2 + 1) - \frac{1}{2} \ln 2 \right) = \infty.
\]

Since the integral \(\int_{1}^{\infty} \frac{x}{x^2 + 1} \, dx \) diverges, we conclude from the integral test that the series \(\sum_{n=1}^{\infty} \frac{n}{n^2 + 1} \) diverges.

3. \(\sum_{n=1}^{\infty} \frac{1}{e^n} \)

Answer: We use the integral test with \(f(x) = \frac{1}{e^x} \) to determine whether this series converges or diverges.

To do so we determine whether the corresponding improper integral \(\int_{1}^{\infty} \frac{1}{e^x} \, dx \) converges or diverges:

\[
\int_{1}^{\infty} \frac{1}{e^x} \, dx = \lim_{b \to \infty} \int_{1}^{b} e^{-x} \, dx = \lim_{b \to \infty} -e^{-x} \bigg|_{1}^{b} = \lim_{b \to \infty} (-e^{-b} + e^{-1}) = e^{-1}.
\]

Since the integral \(\int_{1}^{\infty} \frac{1}{e^x} \, dx \) converges, we conclude from the integral test that the series \(\sum_{n=1}^{\infty} \frac{1}{e^n} \) converges.

We can also observe that this is a geometric series with ratio \(x = \frac{1}{e} < 1 \), and hence it converges.

4. \(\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^2} \)

Answer: We use the integral test with \(f(x) = \frac{1}{x(\ln x)^2} \) to determine whether this series converges or diverges. We determine whether the corresponding improper integral \(\int_{2}^{\infty} \frac{1}{x(\ln x)^2} \, dx \) converges or diverges:

\[
\int_{2}^{\infty} \frac{1}{x(\ln x)^2} \, dx = \lim_{b \to \infty} \int_{2}^{b} \frac{1}{x(\ln x)^2} \, dx = \lim_{b \to \infty} -\frac{1}{\ln x} \bigg|_{2}^{b} = \lim_{b \to \infty} \left(-\frac{1}{\ln b} + \frac{1}{\ln 2} \right) = \frac{1}{\ln 2}.
\]

Since the integral \(\int_{2}^{\infty} \frac{1}{x(\ln x)^2} \, dx \) converges, we conclude from the integral test that the series \(\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^2} \) converges.

5) Use the alternating series test to show that the following series converge.

1. \(\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{\sqrt{n}} \)

Answer: Let \(a_n = 1/\sqrt{n} \). Then replacing \(n \) by \(n + 1 \) we have \(a_{n+1} = 1/\sqrt{n + 1} \). Since \(\sqrt{n + 1} > \sqrt{n} \), we have \(\frac{1}{\sqrt{n}} > \frac{1}{\sqrt{n+1}} \), hence \(a_{n+1} < a_n \). In addition, \(\lim_{n \to \infty} a_n = 0 \) so \(\sum_{n=0}^{\infty} \frac{(-1)^n}{\sqrt{n}} \) converges by the alternating series test.

2. \(\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{2n+1} \)

Answer: Let \(a_n = 1/(2n + 1) \). Then replacing \(n \) by \(n + 1 \) gives \(a_{n+1} = 1/(2n + 3) \). Since \(2n + 3 > 2n + 1 \), we have

\[
0 < a_{n+1} = \frac{1}{2n+3} < \frac{1}{2n+1} = a_n.
\]

We also have \(\lim_{n \to \infty} a_n = 0 \). Therefore, the alternating series test tells us that the series \(\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{2n+1} \) converges.

3. \(\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^2 + 2n + 1} \)

Answer: Let \(a_n = 1/(n^2 + 2n + 1) = 1/(n + 1)^2 \). Then replacing \(n \) by \(n + 1 \) gives \(a_{n+1} = 1/(n + 2)^2 \). Since \(n + 2 > n + 1 \), we have

\[
\frac{1}{(n+2)^2} < \frac{1}{(n+1)^2}
\]
We also have \(\lim_{n \to \infty} a_n = 0 \). Therefore, the alternating series test tells us that the series \(\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^2 + 2n + 1} \) converges.

4. \(\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{e^n} \)
Answer: Let \(a_n = 1/e^n \). Then replacing \(n \) by \(n + 1 \) we have \(a_{n+1} = 1/e^{n+1} \). Since \(e^{n+1} > e^n \), we have \(\frac{1}{e^{n+1}} < \frac{1}{e^n} \), hence \(a_{n+1} < a_n \). In addition, \(\lim_{n \to \infty} a_n = 0 \) so \(\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{e^n} \) converges by the alternating series test. We can also observe that the series is geometric with ratio \(x = -1/e \) can hence converges since \(|x| < 1 \).

6) In the following exercises determine whether the series is absolutely convergent, conditionally convergent, or divergent.

1. \(\sum \frac{(-1)^n}{2^n} \)
Answer: Both \(\sum \frac{(-1)^n}{2^n} = \sum \left(\frac{-1}{2} \right)^n \) and \(\sum \frac{1}{2^n} = \sum \left(\frac{1}{2} \right)^n \) are convergent geometric series. Thus \(\sum \frac{(-1)^n}{2^n} \) is absolutely convergent.

2. \(\sum \frac{(-1)^n}{n^2 + 7} \)
Answer: The series \(\sum \frac{(-1)^n}{n^2 + 7} \) converges by the alternating series test. However \(\sum \frac{1}{2n} \) diverges because it is a multiple of the harmonic series. Thus \(\sum \frac{(-1)^n}{n^2 + 7} \) is conditionally convergent.

3. \(\sum (-1)^n \left(1 + \frac{1}{n^2} \right) \)
Answer: Since \(\lim_{n \to \infty} \left(1 + \frac{1}{n^2} \right) = 1 \), the \(n \)th term \(a_n = (-1)^n \left(1 + \frac{1}{n^2} \right) \) does not tend to zero as \(n \to \infty \). Thus, the series \(\sum (-1)^n \left(1 + \frac{1}{n^2} \right) \) is divergent.

4. \(\sum \frac{(-1)^n}{n^2 + 1} \)
Answer: The series \(\sum \frac{(-1)^n}{n^2 + 1} \) converges by the alternating series test. Moreover, the series \(\sum \frac{1}{n^2 + 1} \) converges by comparison with the convergent \(p \)-series \(\sum \frac{1}{n^2} \). Thus \(\sum \frac{(-1)^n}{n^2 + 1} \) is absolutely convergent.

5. \(\sum \frac{(-1)^{n-1}}{n \ln n} \)
Answer: We first check absolute convergence by deciding whether \(\sum 1/(n \ln n) \) converges by using the integral test. Since
\[
\int_2^{\infty} \frac{dx}{x \ln x} = \lim_{b \to \infty} \int_2^{b} \frac{dx}{x \ln x} = \lim_{b \to \infty} \ln \ln(b) - \ln \ln(2)),
\]
and since this limit does not exist, \(\sum \frac{1}{n \ln n} \) diverges.

We now check conditional convergence. The original series is alternating so we check whether \(a_{n+1} < a_n \). Consider \(a_n = f(n) \), where \(f(x) = 1/(x \ln x) \). Since
\[
\frac{d}{dx} \left(\frac{1}{x \ln x} \right) = -\frac{1}{x^2 \ln x} \left(1 + \frac{1}{\ln x} \right)
\]
is negative for \(x > 1 \), we know that \(a_n \) is decreasing for \(n \geq 2 \). Thus, for \(n \geq 2 \)
\[
a_{n+1} = \frac{1}{(n+1) \ln(n+1)} < -\frac{1}{n \ln n} = a_n.
\]
Since \(1/(n \ln n) \to 0 \) as \(n \to \infty \), we see that \(\sum \frac{(-1)^{n-1}}{n \ln n} \) is conditionally convergent.

6. \(\sum \frac{(-1)^{n-1} \arctan(1/n)}{n^2} \)
Answer: We first check absolute convergence by deciding whether \(\sum \frac{\arctan(1/n)}{n^2} \) converges. Since \(\arctan x \) is the angle between \(-\pi/2 \) and \(\pi/2 \), we have \(\arctan(1/n) < \pi/2 \) for all \(n \). We compare
\[
\frac{\arctan(1/n)}{n^2} < \frac{\pi/2}{n^2},
\]
and conclude that since \(\pi/2 \sum 1/n^2 \) converges, \(\sum \frac{\arctan(1/n)}{n^2} \) converges. Thus \(\sum \frac{(-1)^{n-1} \arctan(1/n)}{n^2} \) is absolutely convergent.
In the following exercises use the limit comparison test to determine whether the series converges or diverges.

1. \(\sum_{n=1}^{\infty} \frac{5n+1}{3n^2} \), by comparing to \(\sum_{n=1}^{\infty} \frac{1}{n} \)

 Answer: We have
 \[
 \frac{a_n}{b_n} = \frac{(5n+1)/(3n^2)}{1/n} = \frac{5n+1}{3n},
 \]
 so
 \[
 \lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{5n+1}{3n} = \frac{5}{3} = c \neq 0.
 \]
 Since \(\sum_{n=1}^{\infty} \frac{1}{n} \) is a divergent harmonic series, the original series diverges.

2. \(\sum_{n=1}^{\infty} \left(\frac{1+n}{3n} \right)^n \), by comparing to \(\sum_{n=1}^{\infty} \left(\frac{1}{3} \right)^n \)

 Answer: We have
 \[
 \frac{a_n}{b_n} = \frac{(1+n)/(3n)}{(1/3)^n} = \left(\frac{n+1}{n} \right)^n = \left(1 + \frac{1}{n} \right)^n,
 \]
 so
 \[
 \lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n = e = c \neq 0.
 \]
 Since \(\sum_{n=1}^{\infty} \left(\frac{1}{3} \right)^n \) is a convergent geometric series, the original series converges.

3. \(\sum (1 - \cos \frac{1}{n}) \), by comparing to \(\sum 1/n^2 \)

 Answer: The \(n^{th} \) term is \(a_n = 1 - \cos(1/n) \) and we are taking \(b_n = 1/n^2 \). We have
 \[
 \lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{1 - \cos(1/n)}{1/n^2}.
 \]
 This limit is of the indeterminate form 0/0 so we evaluate it using l’Hopital’s rule. We have
 \[
 \lim_{n \to \infty} \frac{1 - \cos(1/n)}{1/n^2} = \lim_{n \to \infty} \frac{\sin(1/n)(-1/n^2)}{-2/n^3} = \lim_{n \to \infty} \frac{1 \sin(1/n)}{2 \cdot 1/n} = \lim_{x \to 0} \frac{1 \sin x}{2 \cdot x} = \frac{1}{2}.
 \]
 The limit comparison test applies with \(c = 1/2 \). The \(p \)-series \(\sum 1/n^2 \) converges because \(p = 2 > 1 \). Therefore \(\sum (1 - \cos(1/n)) \) also converges.

4. \(\sum \frac{1}{n^{1/4}} \)

 Answer: The \(n^{th} \) term \(a_n = 1/(n^4 - 7) \) behaves like \(1/n^4 \) for large \(n \), so we take \(b_n = 1/n^4 \). We have
 \[
 \lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{1/(n^4 - 7)}{1/n^4} = \lim_{n \to \infty} \frac{n^4}{n^4 - 7} = 1.
 \]
 The limit comparison test applies with \(c = 1 \). The \(p \)-series \(\sum 1/n^4 \) converges because \(p = 4 > 1 \). Therefore \(\sum 1/(n^4 - 7) \) also converges.

5. \(\sum \frac{n^3 - 2n^2 + n + 1}{n^2 - 2} \)

 Answer: The \(n^{th} \) term \(a_n = (n^3 - 2n^2 + n + 1)/(n^4 - 2) \) behaves like \(n^3/n^4 = 1/n \) for large \(n \), so we take \(b_n = 1/n \). We have
 \[
 \lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{(n^3 - 2n^2 + n + 1)/(n^4 - 2)}{1/n} = \lim_{n \to \infty} \frac{n^4 - 2n^3 + n^2 + n}{n^4 - 2} = 1.
 \]
 The limit comparison test applies with \(c = 1 \). The harmonic series \(\sum 1/n \) diverges. Thus \(\sum (n^3 - 2n^2 + n + 1) / (n^4 - 2) \) also diverges.

6. \(\sum \frac{2^n}{3^n - 1} \)

 Answer: The \(n^{th} \) term \(a_n = 2^n/(3^n - 1) \) behaves like \(2^n/3^n \) for large \(n \), so we take \(b_n = 2^n/3^n \). We have
 \[
 \lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{2^n/(3^n - 1)}{2^n/3^n} = \lim_{n \to \infty} \frac{3^n}{3^n - 1} = \lim_{n \to \infty} \frac{1}{1 - 3^{-n}} = 1.
 \]
 The limit comparison test applies with \(c = 1 \). The geometric series \(\sum 2^n/3^n = \sum (2/3)^n \) converges. Therefore \(\sum 2^n/(3^n - 1) \) also converges.
7. \[\sum \left(\frac{1}{2n-1} - \frac{1}{2n} \right) \]
Answer: The \(n \)th term,
\[a_n = \frac{1}{2n-1} - \frac{1}{2n} = \frac{1}{4n^2 - 2n}, \]
behaves like \(1/(4n^2) \) for large \(n \), so we take \(b_n = 1/(4n^2) \). We have
\[\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{1/(4n^2 - 2n)}{1/(4n^2)} = \lim_{n \to \infty} \frac{4n^2}{4n^2 - 2n} = \lim_{n \to \infty} \frac{1}{1 - 1/(2n)} = 1. \]
The limit comparison test applies with \(c = 1 \). The series \(\sum 1/(4n^2) \) converges because it is a multiple of a \(p \)-series with \(p = 2 > 1 \). Therefore \(\sum \left(\frac{1}{2n-1} - \frac{1}{2n} \right) \) also converges.

8. \[\sum \frac{1}{2\sqrt{n} + \sqrt{n+2}} \]
Answer: The \(n \)th term \(a_n = 1/(2\sqrt{n} + \sqrt{n+2}) \) behaves like \(1/(3\sqrt{n}) \) for large \(n \), so we take \(b_n = 1/(3\sqrt{n}) \). We have
\[\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{1/(2\sqrt{n} + \sqrt{n+2})}{1/(3\sqrt{n})} = \lim_{n \to \infty} \frac{3\sqrt{n}}{2\sqrt{n} + \sqrt{n+2}} = \lim_{n \to \infty} \frac{3}{2 + \sqrt{1 + 2/n}} = \frac{3}{2 + \sqrt{1 + 0}} = 1. \]
The limit comparison test applies with \(c = 1 \). The series \(\sum 1/(3\sqrt{n}) \) diverges because it is a multiple of a \(p \)-series with \(p = 1/2 < 1 \). Therefore \(\sum 1/(2\sqrt{n} + \sqrt{n+2}) \) also diverges.

8) Explain why the integral test cannot be used to decide if the following series converge or diverge.

1. \[\sum_{n=1}^{\infty} n^2 \]
Answer: The integral test requires that \(f(x) = x^2 \), which is not decreasing.

2. \[\sum_{n=1}^{\infty} e^{-n} \sin n \]
Answer: The integral test requires that \(f(x) = e^{-x} \sin x \), which is not positive, nor is it decreasing.

9) Explain why the comparison test cannot be used to decide if the following series converge or diverge.

1. \[\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2} \]
Answer: The comparison test requires that \(a_n = (-1)^n/n^2 \) be positive. It is not.

2. \[\sum_{n=1}^{\infty} \sin n \]
Answer: The comparison test requires that \(a_n = \sin n \) be positive for all \(n \). It is not.

10) Explain why the ratio test cannot be used to decide if the following series converge or diverge.

1. \[\sum_{n=1}^{\infty} (-1)^n \]
Answer: With \(a_n = (-1)^n \), we have \(|a_{n+1}/a_n| = 1 \), and \(\lim_{n \to \infty} |a_{n+1}/a_n| = 1 \), so the test gives no information.
2. \(\sum_{n=1}^{\infty} \sin n \)
 Answer: With \(a_n = \sin n \), we have \(|a_{n+1}/a_n| = |\sin(n+1)/\sin n| \), which does not have a limit as \(n \to \infty \), so the test does not apply.

11) Explain why the alternating series test cannot be used to decide if the following series converge or diverge.

1. \(\sum_{n=1}^{\infty} (-1)^{n-1} n \)
 Answer: The sequence \(a_n = n \) does not satisfy either \(a_{n+1} < a_n \) or \(\lim_{n \to \infty} a_n = 0 \).

2. \(\sum_{n=1}^{\infty} (-1)^{n-1} \left(2 - \frac{1}{n} \right) \)
 Answer: The alternating series test requires \(a_n = 2 - 1/n \) which is positive and satisfies \(a_{n+1} < a_n \) but \(\lim_{n \to \infty} a_n = 2 \neq 0 \).

12) JAMBALAYA!!! Determine if the following series converge or diverge.

1. \(\sum_{n=1}^{\infty} \frac{2^n}{n!} \)
 Answer: We use the ratio test with \(a_n = \frac{2^n}{n!} \). Replacing \(n \) by \(n + 1 \) gives \(a_{n+1} = \frac{2^{n+1}}{(n+1)!} \) and
 \[
 \frac{|a_{n+1}|}{|a_n|} = \frac{2^{n+1}}{n!} \cdot \frac{n!}{(n+1)!} = \frac{2(n+1)}{n+1}.\]
 Thus
 \[
 L = \lim_{n \to \infty} \frac{|a_{n+1}|}{|a_n|} = \lim_{n \to \infty} \frac{2(n+1)}{n+1} = 2.
 \]
 Since \(L > 1 \), the ratio test tells us that \(\sum_{n=1}^{\infty} \frac{2^n}{n!} \) diverges.

2. \(\sum_{n=1}^{\infty} \frac{2^n}{3^n} \)
 Answer: We use the ratio test with \(a_n = \frac{2^n}{3^n} \). Replacing \(n \) by \(n + 1 \) gives \(a_{n+1} = \frac{(n+1)2^{n+1}}{3^{n+1}} \) and
 \[
 \frac{|a_{n+1}|}{|a_n|} = \frac{(n+1)2^{n+1}}{3^{n+1}} \cdot \frac{3^n}{2^n} = \frac{2(n+1)}{3}.\]
 Thus
 \[
 L = \lim_{n \to \infty} \frac{|a_{n+1}|}{|a_n|} = \lim_{n \to \infty} \frac{2(n+1)}{3} = \frac{2}{3}.
 \]
 Since \(L < 1 \), the ratio test tells us that \(\sum_{n=1}^{\infty} \frac{2^n}{3^n} \) converges.

3. \(\sum_{n=0}^{\infty} e^{-n} \)
 Answer: The first few terms of the series may be written
 \[
 1 + e^{-1} + e^{-2} + e^{-3} + \cdots ;
 \]
 this is a geometric series with \(a = 1 \) and \(x = e^{-1} = 1/e \). Since \(|x| < 1 \), the geometric series converges to
 \[
 S = \frac{1}{1-x} = \frac{1}{1-\frac{1}{e}} = \frac{e}{e-1}.
 \]

4. \(\sum_{n=1}^{\infty} \frac{1}{n^2} \tan \left(\frac{1}{n} \right) \)
 Answer: We compare the series with the convergent series \(\sum 1/n^2 \). From the graph of \(\tan x \), we see that \(\tan x < 2 \) for \(0 \leq x \leq 1 \), so \(\tan(1/n) < 2 \) for all \(n \). Thus
 \[
 \frac{1}{n^2} \tan \left(\frac{1}{n} \right) < \frac{1}{n^2} 2,
 \]
 so the series converges, since \(2 \sum 1/n^2 \) converges. Alternatively, we try the integral test. Since the terms in the series are positive and decreasing, we can use the integral test. We calculate the corresponding integral using the substitution \(w = 1/x \):
 \[
 \int_{1}^{\infty} \frac{1}{x^2} \tan \left(\frac{1}{x} \right) dx = \lim_{b \to \infty} \int_{1}^{b} \frac{1}{x^2} \tan \left(\frac{1}{x} \right) dx = \lim_{b \to \infty} \ln \left(\cos \left(\frac{1}{x} \right) \right) \bigg|_{1}^{b} = \lim_{b \to \infty} \left(\ln \left(\cos \left(\frac{1}{b} \right) \right) - \ln(\cos 1) \right) = -\ln(\cos 1).
 \]
 Since the limit exists, the integral converges, so the series \(\sum_{n=1}^{\infty} \frac{1}{n^2} \tan \left(\frac{1}{n} \right) \) converges.
5. \(\sum_{n=1}^{\infty} \frac{5n+2}{2n^2+3n+7} \)

Answer: We use the limit comparison test with \(a_n = \frac{5n+2}{2n^2+3n+7} \). Because \(a_n \) behaves like \(\frac{5n}{2n^2} = \frac{5}{2n} \) as \(n \to \infty \), we take \(b_n = \frac{1}{n} \).

We have

\[
\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{n(5n + 2)}{2n^2 + 3n + 7} = \frac{5}{2}.
\]

By the limit comparison test (with \(c = \frac{5}{2} \)) since \(\sum_{n=1}^{\infty} \frac{1}{n} \) diverges, \(\sum_{n=1}^{\infty} \frac{5n+2}{2n^2+3n+7} \) also diverges.

6. \(\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{\sqrt[3]{3n-1}} \)

Answer: Let \(a_n = \frac{1}{\sqrt[3]{3n-1}} \). Then replacing \(n \) by \(n+1 \) gives \(a_{n+1} = \frac{1}{\sqrt[3]{3(n+1)-1}} \).

We have

\[
\sqrt[3]{3(n+1)-1} > \sqrt[3]{3n-1},
\]

so \(a_{n+1} < a_n \).

In addition, \(\lim_{n \to \infty} a_n = 0 \) so the alternating series test tells us that the series \(\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{\sqrt[3]{3n-1}} \) converges.

7. \(\sum_{n=1}^{\infty} \frac{\sin n}{\pi} \)

Answer: Since \(0 \leq |\sin n| \leq 1 \) for all \(n \), we may be able to compare with \(\frac{1}{n^2} \). We have \(0 \leq |\sin n/n^2| \leq \frac{1}{n^2} \) for all \(n \). So \(\sum |\sin n/n^2| \) converges by comparison with the convergent series \(\sum (1/n^2) \). Therefore \(\sum (\sin n/n^2) \) also converges, since absolute convergence implies convergence.

8. \(\sum_{n=2}^{\infty} \frac{3}{\ln n^2} \)

Answer: Since

\[
\frac{3}{\ln n^2} = \frac{3}{2\ln n},
\]

our series behaves like the series \(\sum 1/\ln n \). More precisely, for all \(n \geq 2 \), we have

\[
0 \leq \frac{1}{n} \leq \frac{1}{\ln n} \leq \frac{3}{2\ln n} = \frac{3}{\ln n^2},
\]

so \(\sum_{n=2}^{\infty} \frac{3}{\ln n^2} \) diverges by comparison with the divergent series \(\sum \frac{1}{n} \).

9. \(\sum_{n=1}^{\infty} \frac{n(n+1)}{\sqrt{n^3+2n^2}} \)

Answer: Let \(a_n = \frac{n(n+1)}{\sqrt{n^3+2n^2}} \). Since \(n^3 + 2n^2 = n^2(n+2) \), we have

\[
a_n = \frac{n(n+1)}{n\sqrt{n+2}} = \frac{n+1}{\sqrt{n+2}}
\]

so \(a_n \) grows without bound as \(n \to \infty \), therefore the series \(\sum_{n=1}^{\infty} \frac{n(n+1)}{\sqrt{n^3+2n^2}} \) diverges.