Series

1) Consider the series $\sum_{k=0}^{\infty} (-1)^k$

i) Write out the first five partial sums of this series.

ii) Find a general formula for the partial sums. Does it converge? Does the series converge?

2) Consider the series $\sum_{k=1}^{\infty} \ln\left(\frac{k+1}{k}\right)$.

i) Does the n-th term test say anything about this series?

ii) Show that this is a telescoping series and find a formula for the partial sums. Does the series converge?

3) Consider the series $\sum_{n=0}^{\infty} (1 - \frac{1}{n})^n$. Does the n-th term test apply to this series? Does the sequence of general terms converge? Does the series converge?
4) Suppose that \(\sum a_n \) converges. Show that \(\sum \cos(a_n) \) must diverge.

5) For the following series determine whether they converge or not. In case of convergence, find the exact sum.
 i) \(\sum_{n=0}^{\infty} \frac{2^{n+1}}{3^n} \)
 ii) \(\sum_{n=1}^{\infty} \left(-\frac{5}{9}\right)^n \)
 iii) \(\sum_{n=0}^{\infty} \left(\frac{\pi}{6}\right)^n \)

6) Write 0.3 as a geometric series and find its sum

7) Determine whether the following statements are true or false.
 i) If \(\lim a_n = 0 \) then \(\sum a_n \) converges.
 ii) If \(\sum a_n \) converges then \(\lim a_n = 0 \)
 iii) If \(\sum a_n \) does not converge then \(\lim a_n \neq 0 \)
 iv) If \(\sum a_n \) does not converge then who knows what the \(\lim a_n \) is.
 v) A geometric series \(\sum r^n \) is always convergent with sum \(\frac{1}{1-r} \)