
Slow Sorting: A Whimsical Inquiry

Bryant A . Julstrom
Department of Computer Science

St . Cloud State Universit y
St. Cloud, Minnesota 5630 1

julstrom@eeyore .stcloud .msus .edu

Abstract

Sorting is one of the most common and important computin g
operations . In analyzing and comparing sorting algorithms, w e
consider their execution times, as indicated by the number o f
operations they execute as they sort is elements . The simples t
algorithms have times that grow approximately as n 2 , whil e
more complex algorithms offer times that grow approximately a s
nlogn. This paper pursues a contrary goal : a sorting algorith m
whose time grows more quickly than that of the well-known al-
gorithms . The paper exhibits and analyzes such an algorithm .

L Introduction

Sorting is one of the most common and important computin g
operations . It is the focus of a vast literature and the subject o f
lectures and exercises in courses ranging from the first a com-
puting student takes to the very advanced . Knuth describes an d
analyzes about 25 sorting algorithms in his classic series [Knut h
1973] . The more familiar sorting algorithms have proper names ,
like Selection Sort and Heap Sort .

In comparing sorting algorithms, we most often consider th e
time they take, as indicated by the numbers of operations the y
require to sort n values . We compare the rates of growth of
those times as the number of elements to be sorted grows . Th e
simplest algorithms, like Selection Sort, are 0(n 2), while mor e
complicated algorithms, like Heap Sort, are generally 0(n log n) .
We prefer to sort larger sets of elements with the more efficien t
algorithms, those whose times grow more slowly as is grows .

This paper poses a perverse but entertaining question : Ca n
we write a sorting algorithm which is less efficient than thos e
known? That is, is it possible to write a sorting algorithm i n
which each operation plausibly advances the sorting process bu t
whose time is greater than 0(n2) ?

The following sections describe the context of this puzzle ,
give the rules for the "slow sorting" game, describe an algorith m
which answers the question above in the affirmative, prove tha t
the algorithm's time is 0(n3), and indicate how to build sortin g
algorithms of arbitrarily large polynomial time complexity .

2 Sorting

As Knuth has observed, ordering might be a better name fo r
the process we call sorting : rearranging a list of data element s
so that the values of the elements (or of a key field within each)
ascend or descend from the beginning of the list to its end [Knut h
1973] .

SIGCSE
BULLETIN Vol . 24 No . 3 Sept . 1992

	

1 1lJ L la

We divide sorting algorithms into two categories dependin g
on the situations in which they apply . Internal sorting order s
elements held in the computer's memory, as in an array or a
linked list . External sorting orders elements held on a mas s
storage device such as a disk drive . Here we consider the internal
sorting of elements held in an array . For simplicity the element s
will be single values, say integers ; that is, each element is it s
own key .

We generally place internal sorting algorithms in two cate-
gories based on the times they take to sort n elements . The sim-
plest algorithms—Insertion Sort, Selection Sort, Bubble Sort —
have two nested loops . The outer loop executes n — 1 time s
while the inner loop carries out an operation that leaves on e
more element in its proper sorted position relative to the ele-
ments already sorted . These algorithms execute a number of
operations roughly proportional to n2 ; their times are 0(712) .

Sorting algorithms in the second category are more compli-
cated than the n 2 algorithms, We motivate their developmen t
by pointing out how quickly the execution times of the n 2 algo-
rithms grow as the number of elements to be sorted grows . The
more complicated algorithms have average-case times roughl y
proportional to nlogn ; they include heap Sort, Merge Sort, an d
Quick Sort (which is still 0(n 2) in the worst case) .

One algorithm which does not fit into these categories is Shel l
Sort, which uses Insertion Sort to arrange the elements bein g
sorted into interleaved sorted sequences at intervals of k posi-
tions, then decreases k . Shell Sort's average-case time depend s
on the sequence of interval values and has not been precisel y
determined . It may be 0(n(log n) 2) or 0(n 5/4) for good choice s
of intervals [Weiss and Sedgewick 1988] .

No general sorting algorithm which compares entire value s
(or keys) can have average-case time which is less than 0(n log n)
[Knuth 1973, Horowitz and Sahni 1978] . On the other hand, i s
n 2 an upper bound on the time complexity of reasonable sort-
ing algorithms? This paper considers the following quixoti c
question : can we develop a sorting algorithm which is slowe r
than those generally described ; that is, whose time complexit y
is greater than 0(n2) ?

3 The Slow Sorting Puzzle

Our object is to develop an internal sorting algorithm whose tim e
grows more rapidly than 0(n 2) with the number of elements is
to be sorted . It is trivial to insert into a repeated section of any
known algorithm some block of code, whose time depends on n ,
which doesn ' t affect the computation . This maneuver violates

1 2

the spirit of our inquiry; we define the problem in the followin g
way :

Algorithms which are candidates for the slow-sortin g
prize must sort an array A [1 . . n] of n values b y
comparing and moving values . Each operation mus t
plausibly advance the sorting process .

4 An Inefficient Sort

The familiar Bubble Sort is generally considered the least effi-
cient of the easy (0(n2)) sorts . In Bubble Sort, each compariso n
may result in moving two elements of an array a single positio n
closer to their sorted locations . To be less efficient than Bub-
ble Sort and the other n 2 algorithms, a sorting algorithm mus t
move elements towards their final locations in such a way tha t

'each step helps those following it very little and the final sorte d
ordering emerges very slowly . The following algorithm, calle d
Slow Sort, satisfies this requirement .

The Slow Sort algorithm comprises three nested loops . A
variable Interval controls the outermost loop ; Interval take s
on the values n/2, n/3, n/4, . . . , n/n (integer division) . The in-
ner two loops implement a selection sort of the elements A [I] ,
A [1+Interval], A [1+2*Interval],••• . (The Appendix give s
Modula-2 code for this algorithm .) Recall that Selection Sor t
scans the elements to identify the smallest value and swap i t
into the first position, then scans all the elements but the firs t
for the second smallest, which it swaps into the second position ,
and so on . Here, Selection Sort scans the elements at intervals o f
Interval . Each selection sort step should move the elements o f
the array that it touches closer to their target (sorted) location s
in the array.

For example, consider this array of 10 elements :

1

	

2 3

	

4 5

	

6

	

7 8

	

9 10

In the first iteration of Slow Sort's outer loop, Interval is
5, and the inner two loops selection sort the elements A[i] an d
A [6] to obtain the following arrangement of values :

1

	

2	 3	 4	 5	 6	 7	 8	 9 10

A 31 35 66 17 24 42 12 55 28 1 5

In the second iteration of the outer loop, Interval is 3, an d
the inner loops sort the elements A CO , A [47, A [7], and A [10] :

1

	

2

	

3

	

4

	

5

	

6

	

7

	

8

	

9 10

A 12 35 66 15 24 42 17 55 28 3 1

This process continues with Interval equal to 2 and the n
1, after which the array is sorted .

5 Slow Sort's Time

Slow Sort's time is easy to describe . The number of array ele-
ments each Selection Sort step sorts is always either the denom-
inator of the expression for Interval or that denominator plu s
one, and within Selection Sort each search for the next smalles t
value tests all the remaining unsorted elements .

The first traversal of Slow Sort's outer loop, in which Interva l
is n/2, Selection Sorts at least two elements . Selection Sort i s

SIGCSE

	

Vol . 24 No . 3 Sept . 1992BULLETIN

0(n 2), so the time for this iteration is roughly proportional t o
22 . The next iteration, in which Interval is n/3, sorts at leas t
three elements (four in the example above) in time proportional
to 3 2 , and so on . The last iteration, in which Interval is 1 ,
selection sorts all the elements, in time proportional to n 2 , s o
the total time for the sorting is roughly proportional t o

n

22 +3 2 +4 2 + . . . + n 22 _ 2i2
r. 2

n
Hea p
Sort

Selection
Sort

Slo w
Sor t

10 44 45 25 2
20 120 190 212 4
30 210 435 725 2
40 320 780 1739 3
50 424 1225 34227

Table 1 : The numbers of comparisons executed by Slow Sort ,
Selection Sort, and Heap Sort on pseudo-random data sets o f
sizes n = 10, 20, 30, 40, and 50 . These results support the clai m
that the time Slow Sort requires to sort n values is 0(n 3) .

n(n+ 1)(2n_+ 1)
6

n3 n 2 n
3 + 2 + g — 1

The last expression is dominated by an n 3 term ; the time of the
algorithm is 0(n 3) .

Table 1 shows the results of running Selection Sort, Hea p
Sort, and Slow Sort on pseudo-random value sets of several
sizes . Each algorithm reported the number of value compar-
isons required to sort the values (representing the total numbe r
of operations executed) . This investigation supports the analy-
sis above : the number of comparisons Slow Sort executes grow s
as a cubic function of the number of elements being sorted .

Slow Sort thus satisfies the conditions set out in Section 3 .
Each operation plausibly advances the sorting process, yet th e
algorithm's time is 0(n3) .

6 Variations

The clever reader will have figured out that some other n 2 sort s
can replace Selection Sort in Stow Sort to produce an algorith m
whose time is 0(n3) . Similarly, using an nlogn sort in place
of Selection Sort can produce a sort whose time is 0(n 2 logn) .
In general, algorithms generated in this way can be used as w e
have used Selection Sort to produce sorting algorithms whose
times are 0(r'') or 0(nk logn) for any k > 2 .

Not every n 2 sort will produce an n 3 algorithm when used
in Slow Sort . Consider, for example, the two versions of the
familiar Bubble Sort . The simplest version performs every pos-
sible "bubble" pass, even after the array elements are sorted, s o
that the number of comparisons it performs is always the max-
imum possible . The slightly more efficient version includes a
Boolean flag which terminates the algorithm after a bubble pass
in which no exchanges occur . When the elements are sorted, th e
algorithm halts . In the best case (the elements initially sorted) ,
this sort scans the array exactly once .

Using the first version of Bubble Sort to build Slow Sor t
produces an algorithm whose time is 0(n3), in exactly the sam e

A 42 35 66 24 1 52 812 5 53 117

1 3

way as the development above with Selection Sort . Using th e
second version of Bubble Sort, however, produces a sort whic h
is 0(n2) . The Bubble Sort steps move elements towards thei r
final sorted locations, and the Boolean flag terminates each ste p
when there is no more for it to do ; this eliminates a vast numbe r
of computations, so that the resulting version of Slow Sort i s
O(n 2) .

7 Conclusio n

The clever reader also will have asked herself or himself wh y
we should try to find a less efficient way to sort, or to perform
any operation . If we need an answer, beyond the intellectual
entertainment found in this exercise, perhaps it lies here : By
aiming intentionally at inefficiency, we may become more adep t
at identifying and removing poor code from our usual programs ,
where elegance and speed count .

Slow Sort is slow because it applies the Selection Sort ste p
clumsily, in contrast to the clever application of Insertion Sor t
in Shell Sort . In Shell Sort, each insertion step within Inser-
tion Sort stops as soon as it has placed its element among thos e
already sorted, and preceeding steps in Shell Sort, with larger in-
crement values, ensure that this happens relatively quickly . Each
iteration of Slow Sort's outer loop takes very little advantage o f
the partial sorting that previous iterations have accomplished .
Each step in its Selection Sort always examines every unsorted
element among those it must arrange .

The lesson, then, might be this : When we use a segment o f
code to perform a subtask, we should be careful that followin g
steps take advantage of the subtask's effects rather than fritte r
them away .

Exercises

1. Implement Selection Sort and show that the number o f
operations it takes to sort n elements is 0(n 2) .

2. Consider Slow Sort implemented with Selection Sort as de -
scribed in Section 4 . Create an array A [1 . .10] of 10 values
for which, after the first two iterations of Slow Sort's oute r
loop, the value initially in A[1] is farther from its targe t
location than it was when the algorithm began . What does

this suggest about this version of Slow Sort? Is it necessary
that an efficient sorting algorithm always move element s
only towards their target locations? (Hint : Consider Heap
Sort .)

3. Implement two versions of Slow Sort, one using the sim-
plest version of Bubble Sort within the outermost loop ,
and the other using the more efficient version of Bubble
Sort which includes the Boolean flag . Count the numbers
of comparisons each makes on data sets of various sizes .
Do these results confirm the discussion at the end Section

6 ?

4. Another n2 sort is Insertion Sort, which moves each newly -
considered element down into the sorted part of the array ,
shifting larger elements up as necessary . Implement Slo w
Sort using Insertion Sort within the outermost loop an d
count the numbers of comparisons the resulting algorith m
makes on random data sets of various sizes . Does thi s
version of Slow Sort appear to be 0(n3)? Explain .

SIGCBE

	

Vol . 24 No . 3 Sept. . 199 2BULLETIN

5. Rewrite Slow Sort using an (nlogn) sort such as Heap
Sort within the outermost loop . Count the numbers of
comparisons the resulting algorithm makes as it sorts ran-
dom data sets of various sizes . What seems to be true o f
the time of the resulting algorithm ?

Appendix

Modula-2 code for the Slow Sort algorithm . IntArray is de-
clared to be ARRAY Cl . Max] OF INTEGER, and Max is a progra m
constant . The procedure Swap exchanges the values of its tw o
parameters .

PROCEDURE SlowSort(VAR A : IntArray ;
N : INTEGER ;

VAR C : CARDINAL) ;
(* An inefficient sort, with tim e

which is 0(n'3) . C returns the
number of comparisons of array
elements . *)

VAR Interval,K,i,j,min : INTEGER ;
BEGI N

C := 0 ; K := 2 ; Interval := N DIV K ;
WHILE Interval >= 1 D O

(* Selection sort *)
i := 1 ;
WHILE i <= N - Interval D O

min

	

i ;
j := i + Interval ;
WHILE j(<= N D O

INC (C) ;
IF A[j] < Amin] THE N

min := j
END ;
j :e j + Interval

END ;
Swap (A [min] , A [l]) ;
i := i + Interval ;

END ;
(* End of selection sort *)
INC (K) ;
Interval := N DIV K ;

END (* while *)
END SlowSort ;

References

Horowitz, Ellis and Sartaj Salmi (1978) . Fundamentals of Com-
puter Algorithms . Potomac, Maryland : Computer Science
Press, Inc .

Knuth, Donald E . (1973) . The Art of Computer Programming ,

Vol.3 : Sorting and Searching. Reading, Massachusetts :
Addison-Wesley Publishing Company .

Weiss, Mark Allen and Robert Sedgewick (1988) . Tight Lowe r
Bounds for Shellsort, in Proceedings of the 1 st Scandana-
vian Workshop on Algorithm Design (R . Karlsson and A .
Lingus, Eds .) . Berlin : Springer-Verlag .

