Slow Sorting: A Whimsical Inquiry

Bryant A. Julstrom
Department of Computer Science
St. Cloud State University
St. Cloud, Minnesota 56301

julstrom@eeyore.stcloud. msus.edu

Abstract

Sorting is one of the most common and important computing
operations. In analyzing and comparing sorting algorithms, we
consider their execution times, as indicated by the number of
operations they execute as they sort n elements. The simplest
algorithms have times that grow approximately as n?, while
more complex algorithms offer times that grow approximately as
nlogn. This paper pursues a contrary goal: a sorting algorithm
whose time grows more quickly than that of the well-known al-
gorithms. The paper exhibits and analyzes such an algorithm.

1 Introduction

Sorting is one of the most common and important computing
operations. It is the focus of a vast literature and the subject of
lectures and exercises in courses ranging from the first a com-
puting student takes to the very advanced. Knuth describes and
analyzes about 25 sorting algorithms in his classic series [Knuth
+1973]. The more familiar sorting algorithms have proper names,
like Selection Sort and Heap Sort.

In comparing sorting algorithms, we most often consider the
time they take, as indicated by the numbers of operations they
require to sort n values. We compare the rates of growth of
those times as the number of elements to be sorted grows, The
simplest algorithms, like Selection Sort, are O(n?), while more
complicated algorithms, like Heap Sort, are generally O(nlogn).
We prefer to sort larger sets of elements with the more efficient
algorithms, those whose times grow more slowly as n grows.

This paper poses a perverse but entertaining question: Can
we write a sorting algorithm which is less efficient than those
known? That is, is it possible to write a sorting algorithm in
which each operation plausibly advances the sorting process but
whose time is greater than O(a?)?

The following sections describe the context of this puzzle,
give the rules for the “slow sorting” game, describe an algorithm
which answers the question above in the affirmative, prove that
the algorithm’s time is O(n3), and indicate how to build sorting
algorithms of arbitrarily large polynomial time complexity.

2 Sorting

As Knuth has observed, ordering might be a better name for
the process we call sorting: rearranging 2 list of data elements
so that the values of the elements (or of a key field within each)
ascend or descend from the beginning of the list to its end [Knuth
1973].

SIGCSE

BULLETIN Vo' 21

No. 3 Sept. 1992

11

We divide sorting algorithms into two categories depending
on the situations in which they apply. Internal sorting orders
elements held in the computer’s memory, as in an array or a
linked list. FExternal sorting orders elements held on a mass
storage device such as a disk drive. Here we consider the internal
sorting of elements held in an array. For simplicity the elements
will be single values, say integers; that is, each element is its
own key.

We generally place internal sorting algorithms in two cate-
gories based on the times they take to sort n elements. The sim-
plest algorithms—Insertion Sort, Selection Sort, Bubble Sort—
have two nested loops. The outer loop executes n — 1 times
while the inner loop carries out an operation that leaves one
more element in its proper sorted position relative to the ele-
ments already sorted. These algorithms execute a number of
operations roughly proportional to n%; their times are O(n?).

Sorting algorithms in the second category are more compli-
cated than the n® algorithms. We motivate their development
by pointing out how quickly the execution times of the n? algo-
rithms grow as the number of elements to be sorted grows. The
more complicated algorithms have average-case times roughly
ptoportional to nlogn; they include Heap Sort, Merge Sort, and
Quick Sort (which is still O(n?) in the worst case).

One algorithm which does not fit into these categories is Shell
Sort, which uses Insertion Sort to arrange the elements being
sorted into interleaved sorted sequences at intervals of £ posi-
tions, then decreases k. Shell Sort’s average-case time depends
on the sequence of interval values and has not been precisely
determined. It may be O(n(logn)?) or O(n3/*) for good choices
of intervals [Weiss and Sedgewick 1988].

No general sorting algorithm which compares entire values
(or keys) can have average-case time which is less than O(n logn)
[Knuth 1973, Horowitz and Sahni 1978]. On the other hand, is
n? an upper bound on the time complexity of reasonable sort-
ing algorithms? This paper considers the following quixotic
question: can we develop a sorting algorithm which is slower
than those generally described; that is, whose time complexity
is greater than O(n?)?

3 The Slow Sorting Puzzle

Qur object is to develop an internal sorting algorithm whose time
grows more rapidly than O(n?) with the number of elements n
to be sorted. It is trivial to insert into a repeated section of any
known algorithm some block of code, whose time depends on n,
which doesn’t affect the computation. This maneuver violates

the spirit of our inquiry; we define the problem in the following
way:

Algorithms which are candidates for the slow-sorting
prize must sort an array A[1..n) of n values by
comparing and moving values. Each operation must
plausibly advance the sorting process.

4 An Inefficient Sort

The familiar Bubble Sort is generally considered the least effi-
cient of the easy (O(n?)) sorts. In Bubble Sort, each comparison
may result in moving two elements of an array a single position
closer to their sorted locations. To be less efficient than Bub-
ble Sort and the other n? algorithms, a sorting algorithm must
move elements towards their final locations in such a way that
-each step helps those following it very little and the final sorted
ordering emerges very slowly. The following algorithm, called
Slow Sort, satisfies this requirement.

The Slow Sort algorithm comprises three nested loops. A
variable Interval controls the outermost loop; Interval takes
on the values n/2,n/3,n/4,...,n/n (integer division). The in-
ner two loops implement a selection sort of the elements 4[1],
A[1+Interval], A(i+2xIntervall, .- . (The Appendix gives
Modula-2 code for this algorithm.) Recall that Selection Sort
scans the elements to identify the smallest value and swap it
into the first position, then scans all the elements but the first
for the second smallest, which it swaps into the second position,
and so on. Here, Selection Sort scans the elements at intervals of
Interval. Each selection sort step should move the elements of
the array that it touches closer to their target (sorted) locations
in the array.

For example, consider this array of 10 elements:

12 7 8 9 10
A|42|35 12]55|28|15

3 4 5 6
66 I 17l24J 31
In the first iteration of Slow Sort’s outer loop, Interval is

5, and the inner two loops selection sort the elements 4[1] and
A[6] to obtain the following arrangement of values:

1 2 3 4 5 6 7 8 9 10
A 31]35'66|17[‘24|42 12|55|28|l5l

In the second iteration of the outer loop, Intexrval is 3, and
the inner loops sort the elements A{1], A[4], A[7], and A[10]:
10

1 2 3 4 5 6 7 8 9
A {12]35 6615 |24 [42] 1755 [28 31 |

This process continues with Interval equal to 2 and then
1, after which the array is sorted.

5 Slow Sort’s Tiine

Slow Sort’s time is easy to describe. The number of array ele-
ments each Selection Sort step sorts is always either the denom-
inator of the expression for Interval or that denominator plus
one, and within Selection Sort each search for the next smallest
value tests all the remaining unsorted elements,

The first traversal of Slow Sort’s outer loop, in which Interval
is n/2, Selection Sorts at least two elements. Selection Sort is

SIGCSE

BULLETIN Vol

24 No. 3 Sept. 1992

12

0O(n?), so the time for this iteration is roughly proportional to
22, The next iteration, in which Interval is n/3, sorts at least
three elements (four in the example above) in time proportional
to 3%, and so on. The last iteration, in which Interval is 1,
selection sorts all the elements, in time proportional to n?, so
the total time for the sorting is roughly proportional to

n

i

=2

22432447440 =

Heap | Selection | Slow

n | Sort Sort Sort
10 44 45 252
20 | 120 190 2124
30 | 210 435 7252
40 | 320 780 17393
50 | 424 1225 34227

Table 1: The numbers of comparisons executed by Slow Sort,
Selection Sort, and Heap Sort on pseudo-random data sets of
sizes n = 10, 20, 30, 40, and 50. These results support the claim
that the time Slow Sort requires to sort n values is O(n?).

n(n+ 1)(2n + 1)
-
n® a2 n

ERF
The last expression is dominated by an n? term; the time of the
algorithm is O(n3).

Table 1 shows the results of running Selection Sort, Heap
Sort, and Slow Sort on pseudo-random value sets of several
sizes. FEach algorithm reported the number of value compar-
isons required to sort the values (representing the total number
of operations executed). This investigation supports the analy-
sis above: the number of comparisons Slow Sort executes grows
as a cubic function of the number of elements being sorted.

Slow Sort thus satisfies the conditions set out in Section 3.
Each operation plausibly advances the sorting process, yet the
algorithm’s time is O(n?).

1

3

6 Variations

The clever reader will have figured out that some other n? sorts
can replace Selection Sort in Slow Sort to produce an algorithm
whose time is O(n®). Similarly, using an nlogn sort in place
of Selection Sort can produce a sort whose time is O(n?logn).
In general, algorithms generated in this way can be used as we
have used Selection Sort to produce sorting algorithms whose
times are O(n*) or O(n* logn) for any k > 2.

Not every n? sort will produce an n® algorithm when used
in Slow Sort. Consider, for example, the two versions of the
familiar Bubble Sort. The simplest version performs every pos-
sible “bubble” pass, even after the array elements are sorted, so
that the number of comparisons it performs is always the max-
imum possible. The slightly more efficient version includes a
Boolean flag which terminates the algorithm after a bubble pass
in which no exchanges occur. When the elements are sorted, the
algorithm halts. In the best case (the elements initially sorted),
this sort scans the array exactly once.

Using the first version of Bubble Sort to build Slow Sort
produces an algorithm whose time is O(n?), in exactly the same

way as the development above with Selection Sort. Using the
second version of Bubble Sort, however, produces a sort which
is O(n?). The Bubble Sort steps move elements towards their
final sorted locations, and the Boolean flag terminates each step
when there is no more for it to do; this eliminates a vast number
of computations, so that the resulting version of Slow Sort is

O(n?).

7 Conclusion

The clever reader also will have asked herself or himself why
we should try to find a less efficient way to sort, or to perform
any operation, If we need an answer, beyond the intellectual
entertainment found in this exercise, perhaps it lies here: By
aiming intentionally at inefficiency, we may become more adept
at identifying and removing poor code from our usual programs,
where elegance and speed count.

Slow Sort is slow because it applies the Selection Sort step
clumsily, in contrast to the clever application of Insertion Sort
in Shell Sort. In Shell Sort, each insertion step within Inser-
tion Sort stops as soon as it has placed its element among those
already sorted, and preceeding steps in Shell Sort, with larger in-
crement values, ensure that this happens relatively quickly. Each
iteration of Slow Sort’s outer loop takes very little advantage of
the partial sorting that previous iterations have accomplished.
Each step in its Selection Sort always examines every unsorted
element among those it must arrange.

The lesson, then, might be this: When we use a segment of
code to perform a subtask, we should be careful that following
steps take advantage of the subtask’s effects rather than fritter
them away.

Exercises

1. Implement Selection Sort and show that the number of
operations it takes to sort n elements is O(n?).

2. Consider Slow Sort implemented with Selection Sort as de-
scribed in Section 4. Create an array A(L..10] of 10 values
for which, after the first two iterations of Slow Sort's outer
loop, the value initially in A(1] is farther from its target
location than it was when the algorithm began. What does
this suggest about this version of Slow Sort? Is it necessary
that an eflicient sorting algorithm always move elements
only towards their target locations? (Hint: Consider Heap
Sort.)

3. Implement two versions of Slow Sort, one using the sim-
plest version of Bubble Sort within the outermost loop,
and the other using the more efficient version of Bubble
Sort which includes the Boolean flag. Count the numbers
of comparisons each makes on data sets of various sizes.
Do these results confirm the discussion at the end Section
67

4, Another n? sort is Insertion Sort, which moves each newly-
considered element down into the sorted part of the array,
shifting larger elements up as necessary. Implement Slow
Sort using Insertion Sort within the outermost loop and
count the numbers of comparisons the resulting algorithm
makes on random data sets of various sizes. Does this
version of Slow Sort appear to be O(n®)? Explain.

SIGCSE
BULLETIN Vol: 24 WNo. 3

Sept. 1992

13

5. Rewrite Slow Sort using an (nlogn) sort such as Heap
Sort within the outermost loop. Count the numbers of
comparisons the resulting algorithm makes as it sorts ran-
dom data sets of various sizes. What seems to be true of
the time of the resulting algorithm?

Appendix

Modula-2 code for the Slow Sort algorithm. IntArray is de-
clared to be ARRAY[1..Max] OF INTEGER, and Max is a program
constant. The procedure Swap exchanges the values of its two
paranieters.

PROCEDURE SlowSort(VAR A : IntArray;
N : INTEGER;
VAR C : CARDINAL);

(* An inefficient sort, with time
vhich is 0(n"3). C returns the
number of comparisons of array
elements. *)

VAR Interval,X,i,j,min

BEGIN

C := 0; K := 2; Interval :=
WHILE Interval >= 1 DO
(* Selection sort *)
=1,
WHILE i <= N - Interval DO
min := i;
j =1 + Interval;
WHILE j <= N DO
INC (C);
IF A[j] < A[min] THEN
min := j
END;
j 1= j + Interval
END;
Swap (Almin),A(i]);
i := i + Interval;
END;
(* End of selection sort %)
INC (K);
Interval := N DIV K;
END (* while %)

: INTEGER;

N DIV K;

END SlowSort;

References

Horowitz, Ellis and Sartaj Sahni (1978). Fundamentals of Com-
puter Algorithms. Potomac, Maryland: Computer Science
Press, Inc.

Knuth, Donald E. (1973). The Art of Computer Programming,
Vol.3: Sorting and Searching. Reading, Massachusetts:
Addison-Wesley Publishing Company.

Weiss, Mark Allen and Robert Sedgewick (1988). Tight Lower
Bounds for Shellsort, in Proceedings of the 15t Scandana-
vian Workshop on Algorithm Design (R. Karlsson and A.
Lingus, Eds.). Berlin: Springer-Verlag,.

