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On the Construction of Skew Quasi-Cyclic Codes
Taher Abualrub, Ali Ghrayeb, Senior Member, IEEE, Nuh Aydin, and Irfan Siap

Abstract—In this paper, we study a special type of quasi-cyclic
(QC) codes called skew QC codes. This set of codes is constructed
using a noncommutative ring called the skew polynomial ring
� ��� ��. After a brief description of the skew polynomial ring
� ��� ��, it is shown that skew QC codes are left submodules of
the ring ��

� � �� ��� ������
� ����. The notions of generator

and parity-check polynomials are given. We also introduce the
notion of similar polynomials in the ring � ��� �� and show that
parity-check polynomials for skew QC codes are unique up to
similarity. Our search results lead to the construction of several
new codes with Hamming distances exceeding the Hamming dis-
tances of the previously best known linear codes with comparable
parameters.

Index Terms—New codes, quasi-cyclic codes, skew fields.

I. INTRODUCTION

A significant portion of the work on error correcting codes
for over the last 60 years has been on the construction of

different types of codes defined over commutative rings. At the
beginning, most of the research on error correcting codes was
concentrated on codes over finite fields. More recently, it has
been shown by many researchers (e.g., [1], [2], [6], and [9]) that
codes over rings are a very important class and many types of
codes with good parameters can be constructed over rings. We
believe that another important direction to consider is the con-
struction of codes using noncommutative rings. Research on this
topic is very recent and interesting. Boucher et al. generalized in
[4] and [5] the notion of cyclic codes by using generator polyno-
mials in a noncommutative polynomial ring called skew polyno-
mial ring. They gave examples of skew cyclic codes with Ham-
ming distances larger than previously best known linear codes
of the same length and dimension [4].

Quasi-cyclic (QC) codes of index over a finite field are
linear codes where the cyclic shift of any codeword by posi-
tions is another codeword. QC codes of index are well
known cyclic codes. QC codes have been shown to be a very
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important class of linear codes [7], [15], [16], [19], [20], [23].
Many of the best known and optimal linear codes that have
been constructed so far are examples of QC codes (e.g., [7],
[11]–[13], and [22]).

In this paper, we study the construction of skew QC codes.
This work has been motivated by the fact that the class of skew
QC codes is much larger than the class of QC codes, suggesting
that better codes may be found in this class. In fact, we have per-
formed a search in the class of skew QC codes over , and
obtained seven new linear quaternary codes with Hamming dis-
tances greater than previously best known linear codes with the
given parameters. These new codes have the parameters [48, 12,
24], [72, 21, 29],[48, 16, 20], [96, 16, 49], [100, 20, 47], [140,
20, 72], and [110, 22, 51]. We also construct a large number of
skew QC codes with Hamming distances equal to the Hamming
distances of the best known linear codes with the given parame-
ters. Our focus in this paper has been on the one-generator skew
QC codes and their properties since this class of codes share
many properties of QC codes.

The rest of the paper is organized as follows. Section II in-
cludes a brief description of the skew polynomial ring .
In Section III, we discuss the structure of skew QC codes
where we show that this type of codes is a left submodule of

. We also discuss the dimension and
the parity check polynomial for these codes. In Section IV, we
introduce the notion of similar polynomials, and show that the
parity-check polynomial of a skew QC code is unique up to
similarity. Section V includes our search results. Section VI
concludes the paper.

II. SKEW POLYNOMIAL RING

Let be a finite field of characteristic . Let be an automor-
phism of with . Let be the subfield of fixed
under . Then, and ,
where . Since the automorphism group of is
cyclic, generated by the Frobenious automorphism , we
have for all .

Example 1: Consider the finite field
where . Define the Frobenius automorphism

Then and . Hence,
the fixed field is just the binary field .

Definition 1: Let be defined as above. The skew polynomial
is the set of polynomials over where addition of the
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polynomials is defined in the usual way while multiplication is
defined using the distributive law and the rule

Example 2: Using the same automorphism from Example 1,
we get

On the other hand, we have

This shows that .

Theorem 1: [17] The set with respect to addition
and multiplication defined above forms a noncommutative ring
called the skew polynomial ring.

The following facts are straightforward for the ring .
1) It has no nonzero zero-divisors.
2) The units of are the units of .
3)
4) .
The skew polynomial ring was introduced in [18], and

a complete treatment of this ring can be found in [14] and [17].

Theorem 2: [17] (The Right Division Algorithm) For any
polynomials and in with there exist unique
polynomials and such that

where

The above result is called division on the right by . A similar
result can be proved regarding division on left by .

Applying the division algorithm above one can easily prove
the following Theorem.

Theorem 3: [14] is a noncommutative principal left
(right) ideal ring. Moreover, any two sided ideal must be gener-
ated by

where .

Corollary 1: Let be an automorphism of with .
Then is a two sided ideal in if and only if .

Definition 2: For any ring , define the center of to be the
set

for all

Lemma 1: for .

Proof: Let . Since
, then for any . Hence

Lemma 2: [5] If , then .

Definition 3: A polynomial is called a left multiple of a
polynomial (in this case will be called a right divisor of )
if there exists a polynomial such that

Now suppose and consider . By Lemma 1,
. If is a left divisor of , then we have

Thus, if is a left divisor of , then it is a right divisor, as
well. This fact will help in reducing the complexity of factoring

in . From now on, we will say divisors or factors
of without specifying left or right.

Definition 4: A monic polynomial is called the greatest
common right divisor (gcrd) of and if:

1) is a right divisor of and ;
2) if is another right divisor of and then for some

polynomial .
The greatest common left divisor (gcld) of and is a monic

polynomial defined in a similar way. Similarly we define the
least common right multiple of and and the least
common left multiple of and ,

Theorem 4: [18] gcrd, gcld, lcrm, and lclm can be calculated
using the left and right division algorithms.

Remark 1: By a principal ideal domain, we mean any ring
(commutative or noncommutative) with no (left or right) zero
divisors and all left (right) ideals are principle. The ring
is an example of a principal ideal domain (see [8]).

III. SKEW QUASI-CYCLIC CODES

Definition 5: Let be a finite field of characteristic with
elements, and let be an automorphism of with
. A subset of is called a skew quasi-cyclic code

of length where , and index (or skew -QC code)
if:

1) is a subspace of ;
2) if
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is a codeword in , then

is also a codeword in .
The map will be referred to as skew cyclic shift oper-

ator. Thus, skew QC codes are linear codes that are closed under
skew cyclic shift. If is the identity map, then skew QC codes
are just the standard QC codes defined over .

In [4], Boucher et al. studied skew cyclic codes over . They
showed that a code is a skew cyclic code if and only if is
a left ideal generated by where is a right divisor of

.
Recall from Corollary 1 that is a two sided ideal if and

only if . Because of this, we will always assume that is
a skew quasi-cyclic code of length where , and
index .

The ring is a left
module, where we define multiplication

from left by

Let be an

element in .
Define a map by

where

for

The map gives a one-to-one correspondence between the ring
and the ring . It is also a vector space isomorphism be-

tween and , when considered as vector spaces over .

Theorem 5: A subset of is a skew QC code of length
and index if and only if is a left submodule of

the ring .
Proof: Let be a skew QC code of index over . We

claim that forms a submodule of where is the map
defined above. Clearly, is closed under addition and scalar
multiplication (by elements of ). Let

where

Then

Then, by linearity, it follows that for any
. Hence, is a left submodule of .

Conversely, suppose is an left submodule of . Let
. We claim that is a

skew QC code over . Since is a vector space isomorphism,
is a linear code of length over . To show that is closed

under skew cyclic shift, let

Then, , where
for . From the above discussion,

it is easy to see that

Hence, . Therefore, is a skew quasi-cyclic code
.

From now on, we concentrate on one-generator skew QC
codes that are cyclic left submodules of , i.e., any skew QC
code that has the form

Sometimes we denote this by

and

Theorem 6: Let be a one-generator skew QC code of length
and index . Then is generated by an element of the

form

where is a divisor of .
Proof: Let be a one-generator skew QC code generated

by . For all , define the following
map:
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The function is a module homomorphism. It is clear that the
image of is a left ideal and, thus, is a skew cyclic code in .
Therefore, for all . Hence

where is a divisor of

Definition 6: Let

be a skew QC code of length and index . The unique
monic polynomial

is called the generator polynomial of .

Definition 7: The monic polynomial of minimal degree
such that

is called the parity-check polynomial of

Theorem 7: Suppose , then there are poly-
nomials , and such that

Proof: The proof is similar to the case of when
the ring is commutative. Suppose . Consider
the left ideal generated by . Since is a prin-
cipal left ideal ring, there exists a polynomial such that

. Hence, and
. However, implies that
and . Since then

and left ideal . Hence, and
we have . Therefore, there are
polynomials , and such that

Corollary 2: Suppose , then there are two
polynomials , and such that

Lemma 3: Let and be the generator and the parity-
check polynomials of a skew QC code . Then

Proof: Since
,

for some polynomial . Note that
by Lemma 2, we have . We also

have where are polynomials in
for all . Hence, we have

Thus, and . Now by
Corollary 2, there are polynomials such that

Therefore

This implies that . Therefore,

Definition 8: Let be a skew QC code. The an-
nihilator of is the set

for all

It is clear that is a left ideal in .

Lemma 4: Let be a skew quasi-cyclic code with
annihilator . Then and

and

Proof: Define the map

is an onto module homomorphism with .
Therefore, and, hence,

IV. SIMILAR POLYNOMIALS IN

In the case of QC codes in the ring , we know that the
parity-check polynomials are unique up to a unit. In the case of
skew QC codes things are not as straightforward as in the case
of QC codes. To study the parity-check polynomials we need to
introduce the notion of similar polynomials in the ring .
Our main result is to show that two codes with parity-check
polynomial and with parity-check polynomial are iso-
morphic if and only if and are similar polynomials.

Definition 9: Two nonzero elements and in a principal
ideal domain are called right similar if there is a such
that

and

Left similar elements can be defined similarly.
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Note that if there is a such that

and

then we have for some . If
, then . Hence, . The

mapping

defined by

is a module homomorphism. We have

which implies for some . Since
then we must have . Therefore, the definition of
right similar (or left similar) is symmetric (see [8, pp. 26–27]).

Example 3: Let be any field of characteristic . We will
show when two linear polynomials and

are right similar.
Let , then and is a right

multiple of and . Hence, if and only if

for some

Hence

This implies that

and This implies

Therefore, is similar to if and only if
.

If we consider the field and the Frobenius automor-
phism we can conclude that the polynomials

and are all right similar.

Theorem 8: If and are right similar then they are left
similar.

Proof: Suppose there is a such that

and

Suppose , then

and

Hence

This implies that

A contradiction. Hence, . Since

then for some . This implies that is a
common right multiple of and . Now suppose .
Then for some . Since is a
common right multiple of and , for some .
Hence

Since is not a (right or a left) zero divisor, . Similarly,
we have

Again, we will have . This implies that is a left
divisor of and . Since , we must have

From now on, if and are right similar we will say that
they are similar. In the case that the ring is commutative, then
two elements are similar if and only if they differ by a unit.

Theorem 9: Let be a parity-check polynomial of a skew
QC code , and let be a parity-check polynomial of a
skew QC code then if and only if is similar
to .

Proof: Suppose . Then
. Let

be such a module isomorphism. Suppose
then

for any (1)

In particular, we have

Since is a module isomorphism, we must have

This implies that and, hence, .
Since is surjective then there is , such that
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Hence, . This gives

or

Hence

(2)

Suppose . Then

Since is injective then . Hence,
and . However, we have .
Therefore

(3)

From (2) and (3), we get that and are (left) sim-
ilar.

Now suppose is (left) similar to . Then there is
such that

and

Define

by

It is clear that is a module homomorphism. It is left to show
that is a bijective function.

Since then for some and
. This implies that

So, for any , we have

Therefore, is surjective. Suppose

for some . Then . So

for some

Since , we have

To show is injective, we need to show that . By
the right division algorithm, we have

where

This implies that

Since , . If
then

and, hence, is injective. If then repeat the right
division algorithm again until we get a remainder
This implies . Therefore, is in-
jective, and, hence, it is an isomorphism.

V. SEARCH RESULTS

The Hamming weight enumerator, , of a code is
defined by

(4)

where is the number of the nonzero coordinates of the
codeword and , i.e., the number
of codewords in whose weights equal .

The smallest nonzero exponent of with a nonzero coeffi-
cient in is equal to the minimum distance of the code.

We know that the ring is a unique factorization domain
and the polynomial has a unique factorization as a product
of irreducible polynomials in . Things are different in the
ring . The skew polynomial ring is not a unique
factorization domain, and, hence, polynomials, in general, do
not have a unique factorization as a product of irreducible poly-
nomials.

Example 4: Consider over . We have

and

One of the main problems of coding theory is to construct
codes with best possible parameters. There is a well known table
of linear codes with best known parameters over small finite
fields [10]. The computer algebra system Magma also has such
a database [3]. Researchers continuously update these tables as
new codes are discovered. As the gaps narrow in the tables, it
gets more and more difficult to find new codes. Many of the
new codes discovered in recent years have come from the class
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TABLE I
PARAMETERS AND GENERATORS OF THE GOOD SKEW QC CODES OF INDEX 2

TABLE II
PARAMETERS AND GENERATORS OF THE GOOD SKEW QC CODES OF INDEX 3 AND 4

of QC and QT codes (e.g., [2], [11], [12], and [22]). One advan-
tage of studying codes in compared to codes over
is that the number of factors of in is much larger.
Therefore, there are many more skew cyclic and skew QC codes
in than there are cyclic and QC codes in . This sug-
gests that it may be possible to find new codes in the ring
with larger Hamming distances.

Our search has yielded a number of skew QC codes with best
known parameters. We call such codes “good codes”. Seven of
these codes lead to improvements in the table [10]. These are
called “new codes”. The improvement on minimum distance
is 1 unit in each case. We present these codes in the rest of

this section. These results show that the class of skew QC is
a promising class that deserves further attention.

In view of the previous section and the findings obtained
therein, our strategy to search for new codes or good codes is
as follows: Choose an integer , and find a factor of
in (where ). Then search
for polynomials so that the skew QC codes of
the form have large minimum distances. We
have used the computer algebra system Magma to carry out all
of the computations.

Example 5: We consider a skew 2-QC code of length 48.
Hence, we need a factorization of . One such factorization
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TABLE III
PARAMETERS AND GENERATORS OF THE GOOD NON-DEGENERATE SKEW QC CODES OF INDEX UP TO 4

TABLE IV
PARAMETERS AND GENERATORS OF THE GOOD NON-DEGENERATE SKEW QC CODES OF LARGER INDICES

is where
and

. Letting
, the code

generated by has parameters [48, 12, 24] over .
This code has a larger minimum distance than the previously
best known code with the same length and dimension.

Example 6: Let us consider a skew 3-QC code of length 72.
We again need a factorization of . Here is another fac-
torization of : , where
and

Now let

and and
consider the code generated by . It is a [72, 21,
29] code and, therefore, better than the previously best known
code with parameters [72, 21, 28].

In the rest of the examples, we use the trivial factor of 1; there-
fore, the generators of the codes are of the form .
We shall refer to such codes as nondegenerate skew QC codes
(since the codes of the form with
are sometimes referred to as degenerate QC codes in the litera-
ture). The polynomials are represented by a list of coefficients
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of increasing powers. Hence, the sequence represents
the polynomial .

Example 7: A [48, 16, 20]-quasi-cyclic linear code
generated by ,

, .

Example 8: A [96, 16, 49]-quasi-cyclic linear code
generated by ,

, ,
, ,

.

Example 9: A [100, 20, 47]- quasi-cyclic linear code gener-
ated by

Example 10: A [140, 20, 72]-quasi-cyclic linear code gener-
ated by

Example 11: A [110, 22, 51]-quasi-cyclic linear code gener-
ated by

We summarize the rest of the results of our search that yielded
good codes in Tables I–IV.

VI. CONCLUSION

In this paper, we study the structure of 1-generator skew
QC codes in the noncommutative ring . We have
shown that skew QC codes are left submodules of the ring

. We also introduced the notion
of similar polynomials in the ring and showed that
parity-check polynomials are unique up to similarity. Our
search results yield to the construction of several new linear
codes with Hamming distance larger than the Hamming dis-
tance of the best linear codes with similar parameters. An
important problem that needs to be addressed is an efficient

method of obtaining all factorizations of in the skew
polynomial ring. Also, a BCH type bound for skew cyclic and
skew QC codes is a future topic of interest.
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