Skew-cyclic codes

D. Boucher • W. Geiselmann • F. Ulmer

Received: 13 June 2006 / Revised: 26 January 2007 / Published online: 2 June 2007
© Springer-Verlag 2007

Abstract

We generalize the notion of cyclic codes by using generator polynomials in (non commutative) skew polynomial rings. Since skew polynomial rings are left and right euclidean, the obtained codes share most properties of cyclic codes. Since there are much more skew-cyclic codes, this new class of codes allows to systematically search for codes with good properties. We give many examples of codes which improve the previously best known linear codes.

Keywords Cyclic codes • Finite rings

1 Introduction

Let \mathbb{F}_{q} be a finite field of q elements. A linear (n, k)-code over \mathbb{F}_{q} is a k-dimensional vector subspace \mathcal{C} of the vector space

$$
V=\mathbb{F}_{q}^{n}=\left\{\left(a_{0}, \ldots, a_{n-1}\right) \mid a_{i} \in \mathbb{F}_{q}\right\}
$$

In the following we use the polynomial representation of the code. In this representation of the code \mathcal{C}, the code words $\left(a_{0}, a_{1}, \ldots, a_{n-1}\right)$ are coefficient tuples of elements $a_{n-1} X^{n-1}+\ldots+a_{1} X+a_{0} \in \mathbb{F}_{q}[X] /\left(X^{n}-1\right)$. A linear code \mathcal{C} is a cyclic code if

$$
\left(a_{0}, a_{1}, \ldots, a_{n-1}\right) \in \mathcal{C} \quad \Rightarrow \quad\left(a_{n-1}, a_{0}, a_{1}, \ldots, a_{n-2}\right) \in \mathcal{C}
$$

[^0]For cyclic codes the polynomials corresponding to code words form an ideal $\mathcal{C}(X)$ in $\mathbb{F}_{q}[X] /\left(X^{n}-1\right)$ and are therefore all multiples of one element, the generator polynomial, $G \in \mathbb{F}_{q}[X] /\left(X^{n}-1\right)$.

In this paper we want to generalize the notion of cyclic codes to the notion of θ-cyclic codes.

Definition 1 Let \mathbb{F}_{q} be a finite field and θ an automorphism of \mathbb{F}_{q}. A θ-cyclic code is a linear code \mathcal{C}_{θ} with the property that

$$
\left(a_{0}, a_{1}, \ldots, a_{n-1}\right) \in \mathcal{C}_{\theta} \quad \Rightarrow \quad\left(\theta\left(a_{n-1}\right), \theta\left(a_{0}\right), \theta\left(a_{1}\right), \ldots, \theta\left(a_{n-2}\right)\right) \in \mathcal{C}_{\theta}
$$

In order to generalize the notion of cyclic codes (corresponding to the case where θ is the identity) we consider skew polynomial rings of automorphism type which we now define. Starting from the finite field \mathbb{F}_{q} and an automorphism θ of \mathbb{F}_{q} one defines a ring structure on the set

$$
\mathbb{F}_{q}[X, \theta]=\left\{a_{n-1} X^{n-1}+\cdots+a_{1} X+a_{0} \mid a_{i} \in \mathbb{F}_{q} \quad \text { and } \quad n \in \mathbb{N}\right\}
$$

This is the set of formal polynomials where the coefficients are written on the left of the variable X. The addition in $\mathbb{F}_{q}[X, \theta]$ is defined to be the usual addition of polynomials and the multiplication is defined by the basic rule $X a=\theta(a) X\left(a \in \mathbb{F}_{q}\right)$ and extended to all elements of $\mathbb{F}_{q}[X, \theta]$ by associativity and distributivity. Those rings are well known (cf. [6,5]), they are the most general "polynomial rings" with a commutative field of coefficients where the degree of a product of two elements is the sum of the degrees of the elements.

Our goal is to give a skew polynomial representation of θ-cyclic codes. We will show that the code words $\left(a_{0}, a_{1}, \ldots, a_{n-1}\right)$ of a θ-cyclic code \mathcal{C}_{θ} are coefficient tuples of elements $a_{n-1} X^{n-1}+\cdots+a_{1} X+a_{0} \in \mathbb{F}_{q}[X, \theta] /\left(X^{n}-1\right)$ which are left multiples of one element $G \in \mathbb{F}_{q}[X, \theta] /\left(X^{n}-1\right)$ (the generator polynomial). This property also guaranties that the encoding procedure of a θ-cyclic code is as easy as for cyclic codes.

We will also show by concrete examples that the class of θ-cyclic codes is a very large class of linear codes (containing the cyclic codes) and that this class contains codes with good properties. Therefore the of class θ-cyclic codes is an interesting class of linear codes which are easy to construct in a systematic way. In a final section we will show how to decode some θ-cyclic codes.

There is a close connection to the q-cyclic codes introduced by Gabidulin in [3] which will be shown in the next section.

2 Generalities on $\boldsymbol{\theta}$-cyclic codes

Properties of θ-cyclic codes are closely related to properties of $\mathbb{F}_{q}[X, \theta]$. The ring $\mathbb{F}_{q}[X, \theta]$ is a left and right euclidean ring whose left and right ideals are principal [6]. Here right division means that for $P_{1}, P_{2} \in \mathbb{F}_{q}[X, \theta]$ which are non zero, there exist
unique polynomials $Q_{r}, R_{r} \in \mathbb{F}_{q}[X, \theta]$ such that

$$
P_{1}=Q_{r} \cdot P_{2}+R_{r} .
$$

If $R_{r}=0$ then P_{2} is a right divisor of P_{1} in $\mathbb{F}_{q}[X, \theta]$. The definition of left divisor in $\mathbb{F}_{q}[X, \theta]$ is similar using the left euclidean division. In the ring $\mathbb{F}_{q}[X, \theta]$ left and right gcd and lcm exist and can be computed using the left and right euclidean algorithm.

Example 1 We denote α a generator of the multiplicative group of $\mathbb{F}_{4}(\alpha$ is a zero of $z^{2}+z+1 \in \mathbb{F}_{2}[z]$ in $\overline{\mathbb{F}_{2}}$). The smallest non commutative skew polynomial ring is $\mathbb{F}_{4}[X, \theta]$ where for $a \in \mathbb{F}_{4}$ we have $\theta(a)=a^{2}$. The left and right division of $X+\alpha$ by $\alpha X+1$ are

$$
\begin{aligned}
X+\alpha & =\alpha^{2}(\alpha X+1)+1 \\
& =(\alpha X+1) \alpha+0
\end{aligned}
$$

We denote $\mathcal{F} \subset \mathbb{F}_{q}$ the subfield of elements of \mathbb{F}_{q} that are left fixed by θ. An element $P \in \mathbb{F}_{q}[X, \theta]$ is central (i.e., commutes with all elements of $\left.\mathbb{F}_{q}[X, \theta]\right)$ if and only if $P=\sum_{i=0}^{m} c_{i} X^{i \cdot \alpha} \in \mathcal{F}[X]$ where $\alpha=|<\theta>|$ is the order of θ ([5], Theorem II.12). In particular central elements of $\mathbb{F}_{q}[X, \theta]$ are the generators of two-sided ideals in $\mathbb{F}_{q}[X, \theta]$ and if $|<\theta>|$ divides n then $\left(X^{n}-1\right) \subset \mathbb{F}_{q}[X, \theta]$ is a two-sided ideal. In the non-commutative ring $\mathbb{F}_{q}[X, \theta] /\left(X^{n}-1\right)$ we identify the image of $P \in \mathbb{F}_{q}[X, \theta]$ under the canonical morphism $\psi: \mathbb{F}_{q}[X, \theta] \rightarrow \mathbb{F}_{q}[X, \theta] /\left(X^{n}-1\right)$ with the remainder R_{r} of P by the right division with $X^{n}-1$ in $\mathbb{F}_{q}[X, \theta]$ and we denote $\psi(X)$ still by X. This representation gives a canonical form for the elements of $\mathbb{F}_{q}[X, \theta] /\left(X^{n}-1\right)$.

Lemma 1 Let \mathbb{F}_{q} be a finite field, θ an automorphism of \mathbb{F}_{q} and n an integer divisible by the order $|<\theta>|$ of θ. The ring $\mathbb{F}_{q}[X, \theta] /\left(X^{n}-1\right)$ is a principal left ideal ring in which left ideals are generated by $\psi(G)$ where G is a right divisor of $X^{n}-1$ in $\mathbb{F}_{q}[X, \theta]$.

Proof The proof is an exact copy of the commutative case only taking care of left and right. Let I be a left ideal of $\mathbb{F}_{q}[X, \theta] /\left(X^{n}-1\right)$. If $I=\{0\}$ then $I=(0)$. Suppose that $I \neq\{0\}$ and denote $\tilde{G} \in I$ a monic non zero polynomial (i.e., a remainder) of minimal degree in I. By abuse of notation we identify the element $\tilde{G} \in I$ with itself in $\mathbb{F}_{q}[X, \theta]$, i.e., $\psi(\tilde{G})=\tilde{G}$ and $\operatorname{deg}(\tilde{G})<n$. Let $\tilde{P} \in I$ be an arbitrary element of I. Since ψ is surjective, there exists $P \in \mathbb{F}_{q}[X, \theta]$ such that $\psi(P)=\tilde{P}$. Performing a right division of P by \tilde{G} in $\mathbb{F}_{q}[X, \theta]$ we get

$$
P=Q_{r} \cdot \tilde{G}+R_{r}, \quad \text { where } \operatorname{deg}\left(R_{r}\right)<\operatorname{deg}(\tilde{G})<n
$$

from which we get $R_{r}=\psi\left(R_{r}\right)=\tilde{P}-\psi\left(Q_{r}\right) \cdot \tilde{G} \in I$. By minimality of the degree of \tilde{G} we must have $R_{r}=\psi\left(R_{r}\right)=0$, showing that $\tilde{P}=\psi\left(Q_{r}\right) \cdot \tilde{G}$ and thus $I=(\tilde{G})$.

For a linear code \mathcal{C} of length n we denote $\mathcal{C}(X)$ the skew polynomial representation of \mathcal{C}. In this representation we associate to a code word $a=\left(a_{0}, a_{1}, \ldots, a_{n-1}\right) \in \mathcal{C}$
the element $a(X)=a_{n-1} X^{n-1}+\ldots+a_{1} X+a_{0}$ in $\mathbb{F}_{q}[X, \theta] /\left(X^{n}-1\right)$. If $a \in \mathcal{C}$, then we denote $a(X) \in \mathbb{F}_{q}[X, \theta] /\left(X^{n}-1\right)$ the skew polynomial representation of a.

Theorem 1 Let \mathbb{F}_{q} be a finite field, θ an automorphism of \mathbb{F}_{q} and \mathcal{C} be a linear code over \mathbb{F}_{q} of length n. If $|<\theta>|$, the order of θ, divides n, then the code \mathcal{C} is a θ-cyclic code if and only if the skew polynomial representation $\mathcal{C}(X)$ of \mathcal{C} is a left ideal $(G) \subset \mathbb{F}_{q}[X, \theta] /\left(X^{n}-1\right)$.

Proof \Rightarrow : By the above Lemma we have to show that $\mathcal{C}(X)$ is a left ideal of $\mathbb{F}_{q}[X, \theta] /\left(X^{n}-1\right)$. Since \mathcal{C} is a linear code, $\mathcal{C}(X)$ is an additive group. Let $a=$ $\left(a_{0}, \ldots, a_{n-1}\right) \in \mathcal{C}$, then

$$
\begin{aligned}
X a(X) & =X a_{0}+X\left(a_{1} X\right)+\cdots+X\left(a_{n-1} X^{n-1}\right) \\
& =\theta\left(a_{0}\right) X+\left(\theta\left(a_{1}\right) X\right) X+\cdots+\left(\theta\left(a_{n-1}\right) X\right) X^{n-1} \\
& =\theta\left(a_{n-1}\right)+\theta\left(a_{0}\right) X+\cdots \theta\left(a_{n-2}\right) X^{n-1}+\theta\left(a_{n-1}\right)\left(X^{n}-1\right) .
\end{aligned}
$$

Therefore in $\mathbb{F}_{q}[X, \theta] /\left(X^{n}-1\right)$, working modulo $X^{n}-1$, we have $X \cdot a(X)=$ $\theta\left(a_{n-1}\right)+\theta\left(a_{0}\right) X+\cdots+\theta\left(a_{n-2}\right) X^{n-1}$. Since \mathcal{C} is θ-cyclic we have $X \cdot a(X) \in$ $\mathcal{C}(X)$ and by iteration and linearity we get for all $P_{r} \in \mathbb{F}_{q}[X, \theta] /\left(X^{n}-1\right)$ that $R_{r} \cdot a(X) \in \mathcal{C}(X)$. This shows that $\mathcal{C}(X)$ is a left ideal of $\mathbb{F}_{q}[X, \theta] /\left(X^{n}-1\right)$.
\Leftarrow : In the opposite direction the properties of a left ideal show that the coefficient vectors of the elements of a left ideal $(G) \subset \mathbb{F}_{q}[X, \theta] /\left(X^{n}-1\right)$ form a linear subspace. From the property $a(X) \in(G) \Rightarrow X \cdot a(X) \in(G)$ we get, using the above computation, that the corresponding linear code is θ-cyclic.

A right factor of degree $n-k$ of $X^{n}-1$ generates a linear code with parameters (n, k). If θ is not the identity (corresponding to the cyclic codes), then $\mathbb{F}_{q}[X, \theta]$ is in general not a unique factorization ring. In this case there are typically much more right factors than in the commutative case, producing many θ-cyclic codes. Note however that, according to [6], the degrees of the irreductible skew polynomials in the factorization of an element of $\mathbb{F}_{q}[X, \theta]$ are unique up to permutation.

Example 2 We keep the notation of example 1. In order to find all [4, 2] skew cyclic codes over \mathbb{F}_{4}, we compute all monic degree two right factors of $X^{4}+1 \in \mathbb{F}_{4}[X, \theta]$: $g_{1}=\left(X^{2}+1\right), g_{2}=\left(X^{2}+\alpha X+\alpha^{2}\right), g_{3}=\left(X^{2}+\alpha^{2} X+\alpha\right), g_{4}=\left(X^{2}+\right.$ $\left.\alpha^{2} X+\alpha^{2}\right), g_{5}=\left(X^{2}+X+\alpha\right), g_{6}=\left(X^{2}+X+\alpha^{2}\right), g_{7}=\left(X^{2}+\alpha X+\alpha\right)$. The corresponding decompositions are

$$
\begin{aligned}
X^{4}+1 & =\left(X^{2}+1\right)\left(X^{2}+1\right) \\
& =\left(X^{2}+\alpha X+\alpha\right)\left(X^{2}+\alpha X+\alpha^{2}\right) \\
& =\left(X^{2}+\alpha^{2} X+\alpha^{2}\right)\left(X^{2}+\alpha^{2} X+\alpha\right) \\
& =\left(X^{2}+\alpha^{2} X+\alpha\right)\left(X^{2}+\alpha^{2} X+\alpha^{2}\right) \\
& =\left(X^{2}+X+\alpha^{2}\right)\left(X^{2}+X+\alpha\right) \\
& =\left(X^{2}+X+\alpha\right)\left(X^{2}+X+\alpha^{2}\right) \\
& =\left(X^{2}+\alpha X+\alpha^{2}\right)\left(X^{2}+\alpha X+\alpha\right)
\end{aligned}
$$

From $X^{4}+1=(X+1)(X+1)(X+1)(X+1)$ we get that the irreducible factors of $X^{4}-1 \in \mathbb{F}_{4}[X, \theta]$ in any decomposition are all of degree one. Therefore none of the above degree two polynomials is irreducible.

The first polynomial g_{1} generates the only [4, 2] cyclic code over \mathbb{F}_{4}; it has minimum weight 2 and generator matrix $G=\left(\begin{array}{llll}1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1\end{array}\right)$. The other polynomials generate a $[4,2,3]$ code each; these six codes are equivalent. For g_{2} the generator matrix is $G=\left(\begin{array}{cccc}1 & 0 & \alpha^{2} & \alpha \\ 0 & 1 & \alpha & \alpha^{2}\end{array}\right)$.

Finally we mention the connection of our approach to the approach in [3]. Gabidulin uses the non commutative ring $\mathbb{F}_{q}\left[X^{q}, \circ\right]$, where the multiplication $F \circ G=F(G)$ is defined as composition, in order to introduce q-cyclic codes. There is a close link between the ring $\mathbb{F}_{q}\left[X^{q}, \circ\right.$] and the skew polynomial ring $\mathbb{F}_{q}[X, \theta]$ (cf. [5], Theorem II.13). The approach in [3] covers θ-cyclic codes in the case where θ is the Frobenius automorphism. Our approach allows to use any power of the Frobenius and we also hope that the different ring structure will lead to alternate decoding procedures in the future.

3 Finding good codes

An obvious technique for finding good linear codes (codes with a large minimum distance d) is a random search. With this technique, the probability to find a code with better parameters than the best known codes, e.g. according to Brouwer's table [2] (http://www.win.tue.nl/aeb/), is very small. Many of the best known codes have some additional structure (e.g. are cyclic codes or are constructed using cyclic codes). Therefore a search within the θ-cyclic codes seems more promising than a random searchespecially as, since $\mathbb{F}_{q}[X, \theta]$ is not a unique factorization ring, there are many θ-cyclic codes for a given set of parameters (n, k).

We implemented a factorization procedure in the computer algebra system MAGMA[1]. This procedure outputs all right skew-factors of $X^{n}-1$, producing the possible generator skew polynomials for θ-cyclic codes. Once the code is given, its minimum distance can be calculated using the existing MAGMA procedures. This latter operation is very time consuming for larger codes, hence we restricted our search to smaller codes with ground fields \mathbb{F}_{4} and \mathbb{F}_{9} and to 5000 codes in the cases, where more skew factors for a given parameter set (n, k) have been found. With this technique we obtained a minimum distance one larger than the previously known best code (according to Brouwer's table) for 8 parameter sets over \mathbb{F}_{4}. Those codes have been added to the MAGMA list of known codes. In most cases we found many different codes with the same minimum distance; in Table 1 the code parameters, the number of codes found with these parameters (No), and a generating polynomial for one code in this class of parameters are given.

For codes over \mathbb{F}_{9} we managed to improve the lower bound for the best known codes in one case (cf. Table 2). Due to the larger ground field and the larger codes, the calculation of $d_{\min }$ is even more time consuming than in the previous case. Therefore we stopped our search for good codes at $n=44$.

Table 1 Parameters and generating polynomial of skew-cyclic codes over \mathbb{F}_{4}. For each code the minimum distance has been improved by 1 according to Brouwer's table

($n, k, d_{\text {min }}$)	No.	g
$(56,30,14)$	1	$\begin{aligned} & x^{26}+x^{23}+\alpha x^{22}+\alpha^{2} x^{21}+\alpha x^{20}+\alpha^{2} x^{19}+\alpha^{2} x^{18}+\alpha x^{17}+x^{16}+x^{14}+x^{13}+ \\ & \alpha x^{11}+\alpha^{2} x^{10}+\alpha^{2} x^{9}+\alpha^{2} x^{8}+\alpha x^{7}+\alpha^{2} x^{6}+\alpha x^{5}+\alpha^{2} x^{4}+x^{2}+\alpha^{2} x+\alpha^{2} \end{aligned}$
$(48,19,17)$	2	$\begin{aligned} & x^{29}+\alpha^{2} x^{28}+x^{26}+\alpha x^{25}+\alpha^{2} x^{24}+\alpha x^{23}+\alpha x^{21}+\alpha x^{20}+\alpha^{2} x^{19}+ \\ & \alpha x^{18}+\alpha x^{17}+\alpha x^{16}+x^{15}+x^{14}+\alpha x^{13}+\alpha x^{10}+\alpha x^{8}+\alpha^{2} x^{7}+x^{6}+ \\ & x^{5}+x^{4}+\alpha^{2} x^{3}+x^{2}+\alpha^{2} \end{aligned}$
$(48,25,13)$	2	$\begin{aligned} & x^{23}+\alpha^{2} x^{22}+x^{21}+\alpha x^{20}+\alpha x^{19}+\alpha^{2} x^{18}+\alpha x^{17}+\alpha x^{14}+\alpha^{2} x^{13}+ \\ & \alpha^{2} x^{11}+x^{9}+\alpha x^{7}+x^{6}+x^{3}+\alpha^{2} x^{2}+1 \end{aligned}$
(42, 17, 16)	3	$\begin{aligned} & x^{25}+x^{23}+\alpha x^{22}+x^{21}+x^{20}+x^{19}+x^{18}+\alpha^{2} x^{17}+\alpha^{2} x^{16}+\alpha x^{15}+ \\ & \alpha x^{14}+x^{13}+x^{11}+x^{10}+x^{8}+\alpha^{2} x^{4}+\alpha^{2} x^{3}+x^{2}+\alpha x+1 \end{aligned}$
$(42,23,11)$	92	$\begin{aligned} & x^{19}+x^{17}+\alpha^{2} x^{16}+\alpha x^{15}+\alpha^{2} x^{14}+\alpha x^{13}+\alpha x^{11}+\alpha^{2} x^{10}+\alpha x^{9}+x^{7}+ \\ & \alpha x^{6}+\alpha^{2} x^{5}+\alpha x^{4}+\alpha x+\alpha^{2} \end{aligned}$
$(40,16,15)$	6	$\begin{aligned} & x^{24}+\alpha x^{23}+x^{22}+x^{21}+\alpha^{2} x^{20}+\alpha x^{19}+\alpha x^{18}+\alpha x^{17}+x^{15}+x^{14}+ \\ & x^{13}+\alpha x^{11}+\alpha^{2} x^{10}+x^{9}+x^{8}+x^{7}+\alpha^{2} x^{6}+\alpha x^{5}+\alpha^{2} x^{4}+\alpha x^{2}+\alpha^{2} \end{aligned}$
$(36,20,10)$	13	$\begin{aligned} & x^{16}+\alpha^{2} x^{15}+x^{13}+\alpha^{2} x^{12}+x^{11}+\alpha x^{10}+x^{9}+\alpha^{2} x^{8}+\alpha x^{7}+\alpha x^{6}+ \\ & \alpha x^{4}+\alpha^{2} x^{3}+\alpha^{2} x^{2}+1 \end{aligned}$
$(30,16,9)$	422	$x^{14}+x^{13}+\alpha x^{11}+x^{10}+x^{9}+x^{8}+\alpha x^{7}+x^{6}+\alpha x^{5}+\alpha^{2} x^{4}+\alpha^{2} x^{2}+\alpha x+\alpha^{2}$

Table 2 Parameters and generating polynomial of skew-cyclic codes over \mathbb{F}_{9}. The minimum distance has been improved by 1 according to the best known codes

$\left(n, k, d_{\text {min }}\right)$	No.	g
$(44,20,17)$	5	$x^{24}+x^{21}+x^{20}+\alpha^{7} x^{19}+\alpha^{3} x^{18}+2 x^{17}+\alpha^{3} x^{16}+\alpha^{5} x^{14}+\alpha^{5} x^{13}+$
$2 x^{12}+\alpha^{2} x^{10}+\alpha^{7} x^{9}+2 x^{6}+\alpha^{5} x^{5}+\alpha^{7} x^{4}+\alpha^{3} x^{3}+\alpha^{7} x^{2}+\alpha^{2} x+2$		

4 Decoding

In the following, instead of a general decoding procedure, we will adapt (to skew $B C H$ codes) the algorithm for decoding BCH codes with designed distance ([4], see also the more recent exposition [7]). We denote $\alpha \in \mathbb{F}_{q}$ a primitive ($q-1$)-th root of unity. We suppose that n is even, $q=2^{m}$ where $m=n$ and that $\theta(\alpha)=\alpha^{2}$. Consider a θ-cyclic code \mathcal{C} whose generating polynomial is $G \in \mathbb{F}_{q}[X, \theta]$ which is a right divisor of $X^{n}-1$ in $\mathbb{F}_{q}[X, \theta]$. We suppose that \mathcal{C} is of designed distance $d \in \mathbb{N}$, which in this context just means that $X-\alpha^{k}$ is a right factor of G for $k \in\{1, \ldots, d-1\}$. In the following section we give an example of a skew BCH codes which is not even cyclic in the classical sense, showing that this class extends the class of BCH codes. The following result allows us to switch to commutative rings for some considerations:

Proposition 1 For $P=\sum_{k=0}^{n-1} a_{k} X^{k} \in \mathbb{F}_{q}[X, \theta], \beta \in \mathbb{F}_{q}$ and $r \in \mathbb{F}_{q}$ the remainder of the right division of P by $X-\beta$, then $r=\tilde{P}(\beta)$ where \tilde{P} is a (classical) polynomial given by $\tilde{P}=\sum_{k=0}^{n-1} a_{k} z^{2^{k}-1} \in \mathbb{F}_{q}[z]$

Proof The remainder of the right division of $P(X)$ by $X-\beta$ is

$$
r=a_{0}+a_{1} \beta+a_{2} \beta \theta(\beta)+a_{3} \beta \theta(\beta) \theta^{2}(\beta)+\cdots+a_{n-1} \beta \cdots \theta^{n-2}(\beta)
$$

Replacing $\theta^{k}(\beta)$ with $\beta^{2^{k}}$, we get $r=\sum_{k=0}^{n-1} a_{k} \beta^{2^{k}-1}=\tilde{P}(\beta)$
Therefore the remainder of the right division of $P \in \mathbb{F}_{q}[X, \theta]$ by $X-\beta$ (and the image of the remainder in $\left.\mathbb{F}_{q}[X, \theta] /\left(X^{n}-1\right)\right)$ can be interpreted as the evaluation of the polynomial \tilde{P} in the commutative ring $\mathbb{F}_{q}[z]$ at $\beta \in \mathbb{F}_{q}$.

Using this property, we can prove like in the classical case ([8], Theorem 6.2) that the distance of the code is at least equal to the designed distance d.

Proposition 2 Let $n \in \mathbb{N}^{*}, q=2^{n}$, α a primitive $(q-1)$-th root of unity. Let \mathcal{C} be a θ-cyclic code with $\theta(\alpha)=\alpha^{2}$. Let $G \in \mathbb{F}_{q}[X, \theta]$ be its generating polynomial such that G is a right divisor of $X^{n}-1$ in $\mathbb{F}_{q}[X, \theta]$ and $X-\alpha^{k}$ is a right factor of G for $k \in\{1, \ldots, d-1\}$.

The distance of the code \mathcal{C} is at least its designed distance d.
Proof According to property (1), a parity-check matrix for the code is

$$
=\binom{H_{1}}{H_{2}}
$$

where

$$
H_{1}=\left(\begin{array}{ccccc}
\alpha_{0} & \alpha_{1} & \cdots & \alpha_{d-1} & \cdots
\end{array} \alpha_{n-1}+\left(\begin{array}{cccc}
\alpha_{0}^{2} & \alpha_{1}^{2} & \cdots & \alpha_{d-1}^{2} \\
\cdots & \alpha_{n-1}^{2} \\
\vdots & & & \\
\alpha_{0}^{d-1} & \cdots & & \\
\alpha_{n-1}^{d-1}
\end{array}\right)\right.
$$

and $\alpha_{i}=\alpha^{2^{i}-1}$. If we consider all the possible sets of $d-1$ columns extracted from the n columns of H_{1}, we get square matrices of order $d-1$. Their determinants are non zero if and only if $\alpha_{i}-\alpha_{j}$ is non zero for $j<i<n$.

But $\alpha_{i}-\alpha_{j}=0 \Leftrightarrow \alpha^{2^{i}-2^{j}}=1$ and $0<2^{i}-2^{j}<2^{n}-1$, so as $2^{n}-1$ is the order of α, we get non zero determinants. So each set of $d-1$ columns of H_{1} are linearly independent, one cannot find any word of weight less than d and the minimum distance of the code is at least d.

We can now adapt almost entirely the classical decoding algorithm for BCH codes which in described in [4].

Let $a \in \mathbb{F}_{q}[X, \theta] /\left(X^{n}-1\right)$ be a code word and $b=a+e \in \mathbb{F}_{q}[X, \theta] /\left(X^{n}-1\right)$ be the received word where $e=e_{i_{1}} X^{i_{1}}+\cdots+e_{i_{r}} X^{i_{r}}$ is the error polynomial with $i_{1}<i_{2}<\cdots<i_{r}$ and where $r \leq t:=\frac{d-1}{2}$.

One defines the syndrome polynomial of e as the polynomial

$$
S_{d}(z)=\sum_{k=1}^{d-1} \operatorname{Rem}\left(e, X-\alpha^{k}\right) z^{k-1} \in \mathbb{F}_{q}[z]
$$

Here the remainder $\operatorname{Rem}\left(e, X-\alpha^{k}\right)$ is to be computed in $\mathbb{F}_{q}[X, \theta]$. From the relation $\operatorname{Rem}\left(e, X-\alpha^{k}\right)=\operatorname{Rem}\left(b, X-\alpha^{k}\right)$, one can compute $S_{d}(z)$ using the received polynomial b. The syndrome polynomial can also be written

$$
S_{d}(z)=\sum_{k=1}^{d-1} \tilde{e}\left(\alpha^{k}\right) z^{k-1}
$$

where $\tilde{e}(z)=\sum_{k=1}^{r} e_{i_{k}} z^{j_{k}} \in \mathbb{F}_{q}[z]$ and $j_{k}=2^{i_{k}}-1$.
One also defines the pseudo-locator polynomial

$$
\sigma(z)=\prod_{k=1}^{r}\left(1-\alpha^{j_{k}} z\right)
$$

and the evaluator polynomial

$$
w(z)=\sum_{l=1}^{r} e_{i_{l}} \alpha^{j_{l}} \prod_{k \neq l}\left(1-\alpha^{j_{k}} z\right)
$$

Knowing $\sigma(z)$ enables us to find the j_{k}, so that we have almost located the positions i_{k} of the errors in e. This point is in fact the only difference with the classical algorithm.

Once we know the j_{k} and the evaluator polynomial $w(z)$, we can recover all the $e_{i_{k}}$ using the following equality

$$
e_{i_{k}}=\alpha^{-j_{k}} w\left(\alpha^{-j_{k}}\right) \prod_{l \neq k}\left(1-\alpha^{j_{l}-j_{k}}\right), k \in\{1, \ldots, r\} .
$$

Let us now define

$$
S(z)=\sum_{k=1}^{\infty} \tilde{e}\left(\alpha^{k}\right) z^{k-1}=S_{d}(z)+z^{d-1} \sum_{k=0}^{\infty} \tilde{e}\left(\alpha^{k+1+d}\right) z^{k}
$$

One gets the classical 'key equation':

$$
\sigma(z) S(z)=w(z)
$$

which one can write

$$
\sigma(z) S_{d}(z)+v(z) z^{d-1}=w(z)
$$

where $v(z)=\sigma(z) \sum_{k=0}^{\infty} \tilde{e}\left(\alpha^{k+1+d}\right) z^{k}$.

Following [4] we apply Euclid's algorithm to the polynomials $S_{d}(z)$ and z^{d-1} in $\mathbb{F}_{q}[z]$. We construct the sequences $\left(r_{i}(z)\right),\left(U_{i}(z)\right)$ and $\left(V_{i}(z)\right)$ defined by

$$
\begin{aligned}
r_{-1}(z) & =z^{d-1}, r_{0}(z)=S_{d}(z) \\
U_{-1}(z) & =0, U_{0}(z)=1, V_{-1}(z)=1, V_{0}(z)=0
\end{aligned}
$$

and at each step i,

$$
\begin{aligned}
r_{i}(z) & =r_{i-2}(z)-q_{i}(z) r_{i-1}(z) \text { with } \operatorname{deg}\left(r_{i}(z)\right)<\operatorname{deg}\left(r_{i-1}(z)\right) \\
U_{i}(z) & =U_{i-2}(z)-q_{i}(z) U_{i-1}(z), V_{i}(z)=V_{i-2}(z)-q_{i}(z) V_{i-1}(z)
\end{aligned}
$$

and we stop as soon as we find k such that $\operatorname{deg}\left(r_{k-1}\right) \geq t$ and $\operatorname{deg}\left(r_{k}\right)<t$.
We get

$$
\begin{aligned}
& U_{k}(z) S_{d}(z)+V_{k}(z) z^{d-1}=r_{k}(z), \\
& \sigma(z)=\frac{U_{k}(z)}{U_{k}(0)} \quad \text { and } \quad w(z)=\frac{r_{k}(z)}{U_{k}(0)}
\end{aligned}
$$

Now from the roots of the pseudo-locator polynomial $\sigma(z)$ we obtain that j_{l}, $l \in\{1, \ldots, r\}$ and from the evaluator polynomial $w(z)$ we get

$$
e_{i_{l}}=\alpha^{-j_{l}} w\left(\alpha^{-j_{l}}\right)\left(\prod_{k \neq l}\left(1-\alpha^{j_{k}-j_{l}}\right)\right)^{-1}, l \in\{1, \ldots, r\} .
$$

So we have found the coefficients of e and we have almost found the positions i_{l} of the errors. For each j_{l}, we get a finite number of possibilities i_{l} solutions to the equation

$$
j_{l}=2^{i_{l}}-1
$$

So we get a finite number of possible errors, which we test until we find e such that $b+e$ is a code word. As the distance of the code is d we are sure that such a e is unique and so we have decoded.

5 Worked example

Let $n=m=10$ and let α such that $\alpha^{2^{10}-1}=1$. The polynomial

$$
G=X^{6}+\alpha^{345} X^{5}+\alpha^{643} X^{4}+\alpha^{878} X^{3}+\alpha^{670} X^{2}+\alpha^{1020} X+\alpha^{777}
$$

divides $X^{10}+1$ to the right in $\mathbb{F}_{2^{10}}[X, \theta]$. Therefore it is the generator polynomial of a θ-cyclic code \mathcal{C} of length 10 over \mathbb{F}_{210}. Since $X-\alpha^{k}$ is a right factor of G for $k \in\{1, \ldots, 6\}$, the code \mathcal{C} is of designed distance $d=7$. One can check that this skew BCH code is not cyclic in the classical sense.

We consider the code word a given by

$$
\begin{aligned}
a(X)= & \alpha^{654} X^{9}+\alpha^{547} X^{8}+\alpha^{650} X^{7}+\alpha^{16} X^{6}+\alpha^{567} X^{5}+\alpha^{29} X^{4}+\alpha^{87} X^{3} \\
& +\alpha^{696} X^{2}+\alpha^{252} X+\alpha^{555},
\end{aligned}
$$

an error

$$
e=\alpha^{341} X^{9}+\alpha^{682} X^{8}+\alpha^{682}
$$

The received perturbed code word $b=a+e$ is

$$
\begin{aligned}
b= & \alpha^{818} X^{9}+\alpha^{775} X^{8}+\alpha^{650} X^{7}+\alpha^{16} X^{6}+\alpha^{567} X^{5}+\alpha^{29} X^{4}+\alpha^{87} X^{3} \\
& +\alpha^{696} X^{2}+\alpha^{252} X+\alpha^{557} .
\end{aligned}
$$

Knowing the received polynomial b and $d=7$, we can compute the syndrome polynomial

$$
S_{7}(z)=\alpha^{404} z^{5}+\alpha^{403} z^{4}+\alpha^{601} z^{3}+\alpha^{645} z^{2}+\alpha^{614} z+\alpha^{406}
$$

Applying Euclid algorithm to $S_{7}(z)$ and z^{6} in $\mathbb{F}_{2^{10}}[z]$ with $t=3$, we get the pseudolocator polynomial

$$
\sigma(z)=\alpha^{766} z^{3}+\alpha^{642} z^{2}+\alpha^{241} z+1
$$

and the evaluator polynomial

$$
w(z)=\alpha^{84} z^{2}+\alpha^{185} z+\alpha^{406}
$$

From the roots $1, \alpha^{512}$ and α^{768} of the polynomial $\sigma(z)$ we get the value of $r(r=3)$ and the values $j_{1}=0, j_{2}=511, j_{3}=255$.

We can now find the values of the coefficients of e via the polynomial w :

$$
e_{i_{1}}=\alpha^{682}, e_{i_{2}}=\alpha^{341}, e_{i_{3}}=\alpha^{682}
$$

We have now to locate exactly the positions of the errors. For each k in $\{1,2,3\}$, we solve the equations

$$
\begin{aligned}
& 2^{i_{k}}-1=j_{k} . \\
& 2^{i_{1}}-1=0 \Leftrightarrow i_{1}=0 \\
& 2^{i_{2}}-1=511 \Leftrightarrow i_{2}=9 \\
& 2^{i_{3}}-1=255 \Leftrightarrow i_{3}=8
\end{aligned}
$$

So the error is

The only one such that g divides $b+e$ to the right is

$$
e=\alpha^{341} X^{9}+\alpha^{682} X^{8}+\alpha^{682}
$$

For this code, 5000 random tests have been made (each random test takes a random code word, a random error of weight at most three and checks whether the corrected word is equal to the code word).

Acknowledgements We would like to thank Thierry Berger for pointing us to the paper of Gabidulin. We were not aware of this work when the preliminary version arXiv/math.RA/0604603 of this work has been published.

References

1. Bosma, W., Cannon, J., Playoust, C.: The magma algebra system 1: the user language. J. Symb. Comp. 24, 235-265 (1997)
2. Brouwer, A.E.: Server for bounds on the minimum distance of q-ary linear codes, $q=2,3,4,5,7,8,9$. 2005. http://www.win.tue.nl/aeb/
3. Gabidulin, E.M.: Theory of codes with maximum rank distance. Probl. Peredach. Inform., 21, 3-16 (1985, in Russian); pp. 1-12 in the English translation
4. MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes. North-Holland, Amsterdam (1981)
5. McDonald, B.R.: Finite Rings with Identity. Marcel Dekker Inc., New York (1974)
6. Ore, O.: Theory of non-commutative polynomials. Ann. Math. 34, 480-508 (1933)
7. Sendrier, N.: Codes correcteurs d'erreurs à haut pouvoir de correction. Thèse de doctorat, spécialité informatique, 1991. Université Paris 6
8. Vanstone, S.A., van Oorchot, P.C.: An Introduction to error correcting codes with applications. Kluwer, Dordrecht (1989)

[^0]: D. Boucher • F. Ulmer (\boxtimes)

 IRMAR, Université de Rennes 1, Campus de Beaulieu, 35042 Rennes Cedex, France
 e-mail: felix.ulmer@univ-rennes1.fr
 W. Geiselmann

 IAKS, Universität Karlsruhe, Fakultät für Informatik, 76128 Karlsruhe, Germany

