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Abstract We generalize the notion of cyclic codes by using generator polynomials
in (non commutative) skew polynomial rings. Since skew polynomial rings are left and
right euclidean, the obtained codes share most properties of cyclic codes. Since there
are much more skew-cyclic codes, this new class of codes allows to systematically
search for codes with good properties. We give many examples of codes which improve
the previously best known linear codes.

Keywords Cyclic codes · Finite rings

1 Introduction

Let Fq be a finite field of q elements. A linear (n, k)-code over Fq is a k-dimensional
vector subspace C of the vector space

V = Fq
n = {(a0, . . . , an−1) | ai ∈ Fq}.

In the following we use the polynomial representation of the code. In this representation
of the code C, the code words (a0, a1, . . . , an−1) are coefficient tuples of elements
an−1 Xn−1 + . . .+ a1 X + a0 ∈ Fq [X ]/(Xn − 1). A linear code C is a cyclic code if

(a0, a1, . . . , an−1) ∈ C ⇒ (an−1, a0, a1, . . . , an−2) ∈ C.
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380 D. Boucher et al.

For cyclic codes the polynomials corresponding to code words form an ideal C(X)
in Fq [X ]/(Xn − 1) and are therefore all multiples of one element, the generator
polynomial, G ∈ Fq [X ]/(Xn − 1).

In this paper we want to generalize the notion of cyclic codes to the notion of
θ -cyclic codes.

Definition 1 Let Fq be a finite field and θ an automorphism of Fq . A θ -cyclic code
is a linear code Cθ with the property that

(a0, a1, . . . , an−1) ∈ Cθ ⇒ (θ(an−1), θ(a0), θ(a1), . . . , θ(an−2)) ∈ Cθ .

In order to generalize the notion of cyclic codes (corresponding to the case where θ
is the identity) we consider skew polynomial rings of automorphism type which we
now define. Starting from the finite field Fq and an automorphism θ of Fq one defines
a ring structure on the set

Fq [X, θ ] =
{

an−1 Xn−1 + · · · + a1 X + a0 | ai ∈ Fq and n ∈ N

}
.

This is the set of formal polynomials where the coefficients are written on the left
of the variable X . The addition in Fq [X, θ ] is defined to be the usual addition of
polynomials and the multiplication is defined by the basic rule Xa = θ(a)X (a ∈ Fq )
and extended to all elements of Fq [X, θ ] by associativity and distributivity. Those
rings are well known (cf. [6,5]), they are the most general “polynomial rings” with a
commutative field of coefficients where the degree of a product of two elements is the
sum of the degrees of the elements.

Our goal is to give a skew polynomial representation of θ -cyclic codes. We will
show that the code words (a0, a1, . . . , an−1) of a θ -cyclic code Cθ are coefficient
tuples of elements an−1 Xn−1 + · · · + a1 X + a0 ∈ Fq [X, θ ]/(Xn − 1) which are left
multiples of one element G ∈ Fq [X, θ ]/(Xn − 1) (the generator polynomial). This
property also guaranties that the encoding procedure of a θ -cyclic code is as easy as
for cyclic codes.

We will also show by concrete examples that the class of θ -cyclic codes is a very
large class of linear codes (containing the cyclic codes) and that this class contains
codes with good properties. Therefore the of class θ -cyclic codes is an interesting class
of linear codes which are easy to construct in a systematic way. In a final section we
will show how to decode some θ -cyclic codes.

There is a close connection to the q-cyclic codes introduced by Gabidulin in [3]
which will be shown in the next section.

2 Generalities on θ -cyclic codes

Properties of θ -cyclic codes are closely related to properties of Fq [X, θ ]. The ring
Fq [X, θ ] is a left and right euclidean ring whose left and right ideals are principal [6].
Here right division means that for P1, P2 ∈ Fq [X, θ ] which are non zero, there exist
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Skew-cyclic codes 381

unique polynomials Qr , Rr ∈ Fq [X, θ ] such that

P1 = Qr · P2 + Rr .

If Rr = 0 then P2 is a right divisor of P1 in Fq [X, θ ]. The definition of left divisor in
Fq [X, θ ] is similar using the left euclidean division. In the ring Fq [X, θ ] left and right
gcd and lcm exist and can be computed using the left and right euclidean algorithm.

Example 1 We denote α a generator of the multiplicative group of F4 (α is a zero of
z2 + z + 1 ∈ F2[z] in F2). The smallest non commutative skew polynomial ring is
F4[X, θ ] where for a ∈ F4 we have θ(a) = a2. The left and right division of X + α

by αX + 1 are

X + α = α2 (αX + 1) + 1

= (αX + 1) α + 0

We denote F ⊂ Fq the subfield of elements of Fq that are left fixed by θ . An element
P ∈ Fq [X, θ ] is central (i.e., commutes with all elements of Fq [X, θ ]) if and only if
P = ∑m

i=0 ci Xi ·α ∈ F[X ] where α = | < θ > | is the order of θ ([5], Theorem
II.12). In particular central elements of Fq [X, θ ] are the generators of two-sided ideals
in Fq [X, θ ] and if | < θ > | divides n then (Xn −1) ⊂ Fq [X, θ ] is a two-sided ideal. In
the non-commutative ring Fq [X, θ ]/(Xn − 1) we identify the image of P ∈ Fq [X, θ ]
under the canonical morphismψ : Fq [X, θ ] → Fq [X, θ ]/(Xn −1)with the remainder
Rr of P by the right division with Xn − 1 in Fq [X, θ ] and we denote ψ(X) still by X .
This representation gives a canonical form for the elements of Fq [X, θ ]/(Xn − 1).

Lemma 1 Let Fq be a finite field, θ an automorphism of Fq and n an integer divisible
by the order | < θ > | of θ . The ring Fq [X, θ ]/(Xn − 1) is a principal left ideal ring
in which left ideals are generated by ψ(G) where G is a right divisor of Xn − 1 in
Fq [X, θ ].
Proof The proof is an exact copy of the commutative case only taking care of left and
right. Let I be a left ideal of Fq [X, θ ]/(Xn − 1). If I = {0} then I = (0). Suppose
that I �= {0} and denote G̃ ∈ I a monic non zero polynomial (i.e., a remainder) of
minimal degree in I . By abuse of notation we identify the element G̃ ∈ I with itself
in Fq [X, θ ], i.e., ψ(G̃) = G̃ and deg(G̃) < n. Let P̃ ∈ I be an arbitrary element of
I . Since ψ is surjective, there exists P ∈ Fq [X, θ ] such that ψ(P) = P̃ . Performing
a right division of P by G̃ in Fq [X, θ ] we get

P = Qr · G̃ + Rr , where deg(Rr ) < deg(G̃) < n

from which we get Rr = ψ(Rr ) = P̃ −ψ(Qr ) · G̃ ∈ I . By minimality of the degree
of G̃ we must have Rr = ψ(Rr ) = 0, showing that P̃ = ψ(Qr ) · G̃ and thus I = (G̃).

��
For a linear code C of length n we denote C(X) the skew polynomial representation

of C. In this representation we associate to a code word a = (a0, a1, . . . , an−1) ∈ C

123



382 D. Boucher et al.

the element a(X) = an−1 Xn−1 + . . . + a1 X + a0 in Fq [X, θ ]/(Xn − 1). If a ∈ C,
then we denote a(X) ∈ Fq [X, θ ]/(Xn − 1) the skew polynomial representation of a.

Theorem 1 Let Fq be a finite field, θ an automorphism of Fq and C be a linear code
over Fq of length n. If | < θ > |, the order of θ , divides n, then the code C is a
θ -cyclic code if and only if the skew polynomial representation C(X) of C is a left
ideal (G) ⊂ Fq [X, θ ]/(Xn − 1).

Proof ⇒: By the above Lemma we have to show that C(X) is a left ideal of
Fq [X, θ ]/(Xn − 1). Since C is a linear code, C(X) is an additive group. Let a =
(a0, . . . , an−1) ∈ C, then

X a(X) = X a0 + X (a1 X)+ · · · + X (an−1 Xn−1)

= θ(a0) X + (θ(a1) X) X + · · · + (θ(an−1) X) Xn−1

= θ(an−1)+ θ(a0) X + · · · θ(an−2) Xn−1 + θ(an−1) (X
n − 1).

Therefore in Fq [X, θ ]/(Xn − 1), working modulo Xn − 1, we have X · a(X) =
θ(an−1) + θ(a0) X + · · · + θ(an−2) Xn−1. Since C is θ -cyclic we have X · a(X) ∈
C(X) and by iteration and linearity we get for all Pr ∈ Fq [X, θ ]/(Xn − 1) that
Rr · a(X) ∈ C(X). This shows that C(X) is a left ideal of Fq [X, θ ]/(Xn − 1).
⇐: In the opposite direction the properties of a left ideal show that the coefficient
vectors of the elements of a left ideal (G) ⊂ Fq [X, θ ]/(Xn − 1) form a linear sub-
space. From the property a(X) ∈ (G) ⇒ X · a(X) ∈ (G) we get, using the above
computation, that the corresponding linear code is θ -cyclic. ��

A right factor of degree n − k of Xn − 1 generates a linear code with parameters
(n, k). If θ is not the identity (corresponding to the cyclic codes), then Fq [X, θ ] is
in general not a unique factorization ring. In this case there are typically much more
right factors than in the commutative case, producing many θ -cyclic codes. Note
however that, according to [6], the degrees of the irreductible skew polynomials in the
factorization of an element of Fq [X, θ ] are unique up to permutation.

Example 2 We keep the notation of example 1. In order to find all [4, 2] skew cyclic
codes over F4, we compute all monic degree two right factors of X4 + 1 ∈ F4[X, θ ]:
g1 = (X2 + 1), g2 = (X2 + α X + α2), g3 = (X2 + α2 X + α), g4 = (X2 +
α2 X + α2), g5 = (X2 + X + α), g6 = (X2 + X + α2), g7 = (X2 + α X + α). The
corresponding decompositions are

X4 + 1 = (X2 + 1) (X2 + 1)
= (X2 + α X + α) (X2 + α X + α2)

= (X2 + α2 X + α2) (X2 + α2 X + α)

= (X2 + α2 X + α) (X2 + α2 X + α2)

= (X2 + X + α2) (X2 + X + α)

= (X2 + X + α) (X2 + X + α2)

= (X2 + α X + α2) (X2 + α X + α)
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Skew-cyclic codes 383

From X4 + 1 = (X + 1) (X + 1)(X + 1) (X + 1) we get that the irreducible factors
of X4 − 1 ∈ F4[X, θ ] in any decomposition are all of degree one. Therefore none of
the above degree two polynomials is irreducible.

The first polynomial g1 generates the only [4, 2] cyclic code over F4; it has minimum

weight 2 and generator matrix G =
(

1 0 1 0
0 1 0 1

)
. The other polynomials generate a

[4, 2, 3] code each; these six codes are equivalent. For g2 the generator matrix is

G =
(

1 0 α2 α

0 1 α α2

)
.

Finally we mention the connection of our approach to the approach in [3]. Gabidulin
uses the non commutative ring Fq [Xq , ◦], where the multiplication F ◦ G = F(G)
is defined as composition, in order to introduce q-cyclic codes. There is a close link
between the ring Fq [Xq , ◦] and the skew polynomial ring Fq [X, θ ] (cf. [5], Theorem
II.13). The approach in [3] covers θ -cyclic codes in the case where θ is the Frobenius
automorphism. Our approach allows to use any power of the Frobenius and we also
hope that the different ring structure will lead to alternate decoding procedures in the
future.

3 Finding good codes

An obvious technique for finding good linear codes (codes with a large minimum
distance d) is a random search. With this technique, the probability to find a code with
better parameters than the best known codes, e.g. according to Brouwer’s table [2]
(http://www.win.tue.nl/̃ aeb/), is very small. Many of the best known codes have some
additional structure (e.g. are cyclic codes or are constructed using cyclic codes). There-
fore a search within the θ -cyclic codes seems more promising than a random search—
especially as, since Fq [X, θ ] is not a unique factorization ring, there are many θ -cyclic
codes for a given set of parameters (n, k).

We implemented a factorization procedure in the computer algebra system
Magma[1]. This procedure outputs all right skew-factors of Xn − 1, producing the
possible generator skew polynomials for θ -cyclic codes. Once the code is given, its
minimum distance can be calculated using the existing MAGMA procedures. This lat-
ter operation is very time consuming for larger codes, hence we restricted our search
to smaller codes with ground fields F4 and F9 and to 5000 codes in the cases, where
more skew factors for a given parameter set (n, k) have been found. With this tech-
nique we obtained a minimum distance one larger than the previously known best code
(according to Brouwer’s table) for 8 parameter sets over F4. Those codes have been
added to the MAGMA list of known codes. In most cases we found many different
codes with the same minimum distance; in Table 1 the code parameters, the number
of codes found with these parameters (No), and a generating polynomial for one code
in this class of parameters are given.

For codes over F9 we managed to improve the lower bound for the best known
codes in one case (cf. Table 2). Due to the larger ground field and the larger codes, the
calculation of dmin is even more time consuming than in the previous case. Therefore
we stopped our search for good codes at n = 44.
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Table 1 Parameters and generating polynomial of skew-cyclic codes over F4. For each code the minimum
distance has been improved by 1 according to Brouwer’s table

(n, k, dmin) No. g

(56,30,14) 1 x26+x23+α x22+α2 x21+α x20+α2 x19+α2 x18+α x17+x16+x14+x13+
α x11 +α2 x10 +α2 x9 +α2 x8 +α x7 +α2 x6 +α x5 +α2 x4 +x2 +α2 x +α2

(48,19,17) 2 x29 + α2 x28 + x26 + α x25 + α2 x24 + α x23 + α x21 + α x20 + α2 x19 +
α x18 + α x17 + α x16 + x15 + x14 + α x13 + α x10 + α x8 + α2 x7 + x6 +
x5 + x4 + α2 x3 + x2 + α2

(48,25,13) 2 x23 + α2 x22 + x21 + α x20 + α x19 + α2 x18 + α x17 + α x14 + α2 x13 +
α2 x11 + x9 + α x7 + x6 + x3 + α2 x2 + 1

(42, 17, 16) 3 x25 + x23 + α x22 + x21 + x20 + x19 + x18 + α2 x17 + α2 x16 + α x15 +
α x14 + x13 + x11 + x10 + x8 + α2 x4 + α2 x3 + x2 + α x + 1

(42, 23, 11) 92 x19 + x17 +α2 x16 +α x15 +α2 x14 +α x13 +α x11 +α2 x10 +α x9 + x7 +
α x6 + α2 x5 + α x4 + α x + α2

(40, 16, 15) 6 x24 + α x23 + x22 + x21 + α2 x20 + α x19 + α x18 + α x17 + x15 + x14 +
x13 + α x11 + α2 x10 + x9 + x8 + x7 + α2 x6 + α x5 + α2 x4 + α x2 + α2

(36, 20, 10) 13 x16 + α2 x15 + x13 + α2 x12 + x11 + α x10 + x9 + α2 x8 + α x7 + α x6 +
α x4 + α2 x3 + α2 x2 + 1

(30,16, 9) 422 x14+x13+α x11+x10+x9+x8+α x7+x6+α x5+α2 x4+α2 x2+α x+α2

Table 2 Parameters and generating polynomial of skew-cyclic codes over F9. The minimum distance has
been improved by 1 according to the best known codes

(n, k, dmin) No. g

(44, 20,17) 5 x24 + x21 + x20 + α7 x19 + α3 x18 + 2 x17 + α3 x16 + α5 x14 + α5 x13 +
2 x12 + α2 x10 + α7 x9 + 2 x6 + α5 x5 + α7 x4 + α3 x3 + α7 x2 + α2 x + 2

4 Decoding

In the following, instead of a general decoding procedure, we will adapt (to skew BCH
codes) the algorithm for decoding BCH codes with designed distance ([4], see also
the more recent exposition [7]). We denote α ∈ Fq a primitive (q −1)-th root of unity.
We suppose that n is even, q = 2m where m = n and that θ(α) = α2. Consider a
θ -cyclic code C whose generating polynomial is G ∈ Fq [X, θ ] which is a right divisor
of Xn − 1 in Fq [X, θ ]. We suppose that C is of designed distance d ∈ N, which in this
context just means that X − αk is a right factor of G for k ∈ {1, . . . , d − 1}. In the
following section we give an example of a skew BCH codes which is not even cyclic
in the classical sense, showing that this class extends the class of BCH codes. The
following result allows us to switch to commutative rings for some considerations:

Proposition 1 For P = ∑n−1
k=0 ak Xk ∈ Fq [X, θ ], β ∈ Fq and r ∈ Fq the remainder

of the right division of P by X −β, then r = P̃(β)where P̃ is a (classical) polynomial
given by P̃ = ∑n−1

k=0 ak z2k−1 ∈ Fq [z]
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Proof The remainder of the right division of P(X) by X − β is

r = a0 + a1 β + a2 β θ(β)+ a3 β θ(β) θ
2(β)+ · · · + an−1 β · · · θn−2(β)

Replacing θk(β) with β2k
, we get r = ∑n−1

k=0 ak β
2k−1 = P̃(β) ��

Therefore the remainder of the right division of P ∈ Fq [X, θ ] by X − β (and the
image of the remainder in Fq [X, θ ]/(Xn − 1)) can be interpreted as the evaluation of
the polynomial P̃ in the commutative ring Fq [z] at β ∈ Fq .

Using this property, we can prove like in the classical case ([8], Theorem 6.2) that
the distance of the code is at least equal to the designed distance d.

Proposition 2 Let n ∈ N
∗, q = 2n, α a primitive (q − 1)-th root of unity. Let C be a

θ -cyclic code with θ(α) = α2. Let G ∈ Fq [X, θ ] be its generating polynomial such
that G is a right divisor of Xn − 1 in Fq [X, θ ] and X − αk is a right factor of G for
k ∈ {1, . . . , d − 1}.

The distance of the code C is at least its designed distance d.

Proof According to property (1), a parity-check matrix for the code is

=
(

H1
H2

)

where

H1 =

⎛
⎜⎜⎜⎝

α0 α1 · · · αd−1 · · · αn−1

α2
0 α2

1 · · · α2
d−1 · · · α2

n−1
...

...

αd−1
0 · · · αd−1

n−1

⎞
⎟⎟⎟⎠

and αi = α2i −1. If we consider all the possible sets of d − 1 columns extracted from
the n columns of H1, we get square matrices of order d − 1. Their determinants are
non zero if and only if αi − α j is non zero for j < i < n.

But αi − α j = 0 ⇔ α2i −2 j = 1 and 0 < 2i − 2 j < 2n − 1, so as 2n − 1 is the
order of α, we get non zero determinants. So each set of d − 1 columns of H1 are
linearly independent, one cannot find any word of weight less than d and the minimum
distance of the code is at least d. ��
We can now adapt almost entirely the classical decoding algorithm for BCH codes
which in described in [4].

Let a ∈ Fq [X, θ ]/(Xn − 1) be a code word and b = a + e ∈ Fq [X, θ ]/(Xn − 1)
be the received word where e = ei1 Xi1 + · · · + eir Xir is the error polynomial with
i1 < i2 < · · · < ir and where r ≤ t := d−1

2 .
One defines the syndrome polynomial of e as the polynomial

Sd(z) =
d−1∑
k=1

Rem(e, X − αk)zk−1 ∈ Fq [z].
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Here the remainder Rem(e, X − αk) is to be computed in Fq [X, θ ]. From the relation
Rem(e, X − αk) = Rem(b, X − αk), one can compute Sd(z) using the received
polynomial b. The syndrome polynomial can also be written

Sd(z) =
d−1∑
k=1

ẽ(αk) zk−1

where ẽ(z) = ∑r
k=1 eik z jk ∈ Fq [z] and jk = 2ik − 1.

One also defines the pseudo-locator polynomial

σ(z) =
r∏

k=1

(1 − α jk z)

and the evaluator polynomial

w(z) =
r∑

l=1

eil α
jl

∏
k �=l

(1 − α jk z).

Knowing σ(z) enables us to find the jk , so that we have almost located the positions ik

of the errors in e. This point is in fact the only difference with the classical algorithm.
Once we know the jk and the evaluator polynomialw(z), we can recover all the eik

using the following equality

eik = α− jk w(α− jk )
∏
l �=k

(1 − α jl− jk ), k ∈ {1, . . . , r}.

Let us now define

S(z) =
∞∑

k=1

ẽ(αk) zk−1 = Sd(z)+ zd−1
∞∑

k=0

ẽ(αk+1+d) zk

One gets the classical ‘key equation’:

σ(z) S(z) = w(z)

which one can write

σ(z) Sd(z)+ v(z) zd−1 = w(z)

where v(z) = σ(z)
∑∞

k=0 ẽ(αk+1+d) zk .
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Skew-cyclic codes 387

Following [4] we apply Euclid’s algorithm to the polynomials Sd(z) and zd−1 in
Fq [z]. We construct the sequences (ri (z)), (Ui (z)) and (Vi (z)) defined by

r−1(z) = zd−1, r0(z) = Sd(z)

U−1(z) = 0,U0(z) = 1, V−1(z) = 1, V0(z) = 0

and at each step i ,

ri (z) = ri−2(z)− qi (z) ri−1(z) with deg(ri (z)) < deg(ri−1(z))

Ui (z) = Ui−2(z)− qi (z)Ui−1(z), Vi (z) = Vi−2(z)− qi (z) Vi−1(z).

and we stop as soon as we find k such that deg(rk−1) ≥ t and deg(rk) < t .
We get

Uk(z) Sd(z)+ Vk(z) zd−1 = rk(z),

σ (z) = Uk(z)

Uk(0)
and w(z) = rk(z)

Uk(0)

Now from the roots of the pseudo-locator polynomial σ(z) we obtain that jl ,
l ∈ {1, . . . , r} and from the evaluator polynomial w(z) we get

eil = α− jl w(α− jl )

⎛
⎝∏

k �=l

(1 − α jk− jl )

⎞
⎠

−1

, l ∈ {1, . . . , r}.

So we have found the coefficients of e and we have almost found the positions il of the
errors. For each jl , we get a finite number of possibilities il solutions to the equation

jl = 2il − 1

So we get a finite number of possible errors, which we test until we find e such that
b + e is a code word. As the distance of the code is d we are sure that such a e is
unique and so we have decoded.

5 Worked example

Let n = m = 10 and let α such that α210−1 = 1. The polynomial

G = X6 + α345 X5 + α643 X4 + α878 X3 + α670 X2 + α1020 X + α777

divides X10 + 1 to the right in F210 [X, θ ]. Therefore it is the generator polynomial
of a θ -cyclic code C of length 10 over F210 . Since X − αk is a right factor of G for
k ∈ {1, . . . , 6}, the code C is of designed distance d = 7. One can check that this skew
BCH code is not cyclic in the classical sense.
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We consider the code word a given by

a(X) = α654 X9 + α547 X8 + α650 X7 + α16 X6 + α567 X5 + α29 X4 + α87 X3

+α696 X2 + α252 X + α555,

an error

e = α341 X9 + α682 X8 + α682.

The received perturbed code word b = a + e is

b = α818 X9 + α775 X8 + α650 X7 + α16 X6 + α567 X5 + α29 X4 + α87 X3

+α696 X2 + α252 X + α557.

Knowing the received polynomial b and d = 7, we can compute the syndrome poly-
nomial

S7(z) = α404 z5 + α403 z4 + α601 z3 + α645 z2 + α614 z + α406

Applying Euclid algorithm to S7(z) and z6 in F210 [z] with t = 3, we get the pseudo-
locator polynomial

σ(z) = α766 z3 + α642 z2 + α241 z + 1

and the evaluator polynomial

w(z) = α84 z2 + α185 z + α406.

From the roots 1, α512 and α768 of the polynomial σ(z) we get the value of r (r = 3)
and the values j1 = 0, j2 = 511, j3 = 255.

We can now find the values of the coefficients of e via the polynomial w:

ei1 = α682, ei2 = α341, ei3 = α682.

We have now to locate exactly the positions of the errors. For each k in {1, 2, 3}, we
solve the equations

2ik − 1 = jk .

2i1 − 1 = 0 ⇔ i1 = 0

2i2 − 1 = 511 ⇔ i2 = 9

2i3 − 1 = 255 ⇔ i3 = 8

So the error is
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The only one such that g divides b + e to the right is

e = α341 X9 + α682 X8 + α682.

For this code, 5000 random tests have been made (each random test takes a random
code word, a random error of weight at most three and checks whether the corrected
word is equal to the code word).
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