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To the Instructor 

 
Ideas from computational complexity play a very fundamental role in cryptography. A formal 

prerequisite for this module is familiarity with basic concepts of algorithm analysis and 

computational complexity, including the big-O notation. Students are also assumed to be able 

to do basic programming in a language such as C, C++ or Java. Necessary material from 

elementary number theory is covered in the module, though familiarity with modular 

arithmetic and some very basic logic (such as proof by contradiction) will be useful. Since 

mostly number theoretical algorithms are discussed in this module, it is very important to 

emphasize that if the input to such an algorithm is an integer ,n then the size of the input  is 

taken to be 2log ( ) 1,n     number of bits needed to store ,n not the magnitude of .n  This is a 

point that is easy for students to forget, therefore it is worth repeating.  While providing 

necessary background in elementary number theory, students will be given a gentle 

introduction to some fundamental notions in abstract algebra such as groups, rings, and fields. 

Students who already have this background may skip that part. (Even if they saw the material 

before, a quick review would not hurt). If the mathematical maturity of the students is not at 

the right level, some of the proofs could be optional. The software used in this module is Maple 

12, though it should also work with some of the earlier versions of Maple. There are several 

projects to choose from at the end. Given the nature of the subject some of these projects are 

research oriented and not completely prescribed. Others are of hands-on type and also not 

completely prescribed, some of the details need to be determined by the instructor. The 

exercises inserted throughout the module and the projects at the end can be used as an 

assessment tool.   

 

 

Abstract 

 
Cryptography, or cryptology, is a subject that is concerned with privacy or confidentiality of 

communication over insecure channels, in the presence of adversaries. It seeks to find ways to 

encrypt messages so that even if an unauthorized party gets a hold of a message, they cannot 

make sense out of it. The ways to break encryption systems, called cryptanalysis, is also part of 

the subject. Cryptography is sometimes confused with the related but distinct field of coding 

theory that deals with reliability of communication over noisy channels. See the author’s 

earlier module titled “An introduction to coding theory via Hamming codes” for an 

introduction to coding theory.  

  

There are two basic methods in cryptography: classical cryptography and public key 

cryptography. The latter is a more recent idea and this module will focus on that method 

through one of its best known and widely used examples: RSA cryptosystem. Proposed in 1977, 

the RSA cryptosystem has survived many attacks and is still commonly used.  

  

KEYWORDS: cryptography, public key cryptography, classical cryptography, 

computational complexity, elementary number theory, one-way functions, RSA cryptosystem.  
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Introduction 

The Main Problem 

Cryptography is primarily concerned with confidentiality of communication over insecure 

channels. There are three generic characters that are often referred to in the subject. Alice and 

Bob try to communicate confidentially, and Eve is the eavesdropper. (Sometimes this character 

is called “Oscar” or “Marvin”.) Alice and Bob need to find ways to scramble their messages so 

that even if Eve intercepts some of their messages she should not be able to make sense out of 

them, at least not in any reasonable amount of time. Ideally, Alice and Bon prefer to have a 

system with unconditional security where Eve cannot gain any knowledge about the messages 

she may intercept no matter how many she obtains and how much computational power she 

has. However, in many situations having unconditional security is not possible or practical. In 

those cases they will be content with computational security: breaking the system is not 

feasible with best known cryptanalytic techniques and available computational resources.  

 

Cryptography has a long history. People have always been interested in keeping some 

information secret from others. Rulers, emperors, politicians, government and military 

personnel often need to communicate confidential information and hence need cryptography. 

There is a well-known cipher named after Julius Caesar. Cryptography and cryptanalysis 

proved to be a decisive factor in World War II.  In today’s world, online and electronic 

transactions are so common that virtually everyone uses cryptography (knowingly or not) to 

protect private information (web sites that take sensitive information are set up so that the data 

is encrypted before being sent).   

 

Formal Set Up and Definitions 

 
To study cryptography in a systematic way, we need to set up a mathematical framework and 

define some terms.  First, we need an alphabet A with a finite set of symbols to form messages. 

The set M of messages consists of all strings of symbols from A. For a positive integer n  A n  

denotes the set of all strings of length n over the alphabet A and A *  represents the set of all 

strings of any finite length over A. In some cryptosystems the messages are required to be of a 

fixed length. A message m  in M before it is encrypted is called a plaintext. Therefore, M is the 

set of all plaintexts. A message after encryption is called a ciphertext. We shall denote the set 

of all ciphertexts by C. Ciphertexts are obtained from plaintexts through an encryption function. 

An encryption function is a function :kE  M→ C   where k  is a key. Given a plaintext ,m  the 

encryption function produces the corresponding ciphertext ( ).kc E m  Intuitively, an 

encryption function locks a message, i.e., makes it unreadable, using the key  ,k   like locking a 

box. We also need a decryption function :kD  C→ M for each encryption function. Note that the 

encryption and decryption functions must be related by  ( ( ))k kD E m m  for all m  in M. This 
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requires the encryption function to be one-to-one. Intuitively, decryption function unlocks the 

message, like opening a safe.  We can summarize all of this in a definition. 

 

Definition: A cryptosystem is a five-tuple (M,C,K,E,D) with the following properties. 

1. M  is the set of all possible plaintexts. 

2. C  is the set of all ciphertexts. 

3. K  is the keyspace, a finite set of possible keys. 

4. For each k  in K. there is an encryption function :kE  M→ C   and a corresponding 

decryption function :kD  C→ M such that ( ( ))k kD E m m  for all m  in M 

 

A general picture of confidential communication in the presence of adversaries can be depicted 

as follows. 

  
 

Problem 1  Show that the condition ( ( ))k kD E m m  for all m  in M implies that :kE  M→ C   is 

a one-to-one function. 

 

There are two main types of cryptographic systems: symmetric key (or classical) and public 

key cryptosystems. The distinction comes from how the keys are used. In the former, the 

encryption and decryption keys are closely related (either the same or one is easily obtained 

from the other) and they are both secret. In a public key cryptosystem the encryption key is 

public, and the decryption key is private. Therefore, the keys come in two parts ( , )k e d , 

where e is the public part of the key (the encryption key), and d is the private decryption key. 

In such systems anyone can lock messages but only the owner of the private key can unlock 

them. 

 

Adversaries are classified by  their capability. A passive adversary only listens to the messages 

intercepted in the unsecured portion of the communication channel between Alice and Bob. An 

active adversary on the other hand may alter messages or replace them with her own, in 

addition to eavesdropping. A good cryptosystem should be able to detect forged messages. The 

goal of eavesdropper is to break the cryptosystem which means that she can systematically 

obtain plaintexts from ciphertexts. We defined two types of security above (unconditional and 

computational). A third type is called provable security which means that breaking the system 

is as difficult as solving a mathematical problem which is believed to be intractable.   

 

A fundamental assumption in cryptography is Kerckhoffs’ principle which states that the 

security of a cryptosystem should rest on the keys alone, not the assumption that the enemy 

Alice 
plaintext 

Encrypt Decrypt  Bob 

Encryption key 

  Eve 

Decryption key 

ciphertext 
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(eavesdropper) does not know the encryption and decryption schemes. Therefore, we always 

assume that the encryption and decryption systems are known to the adversary, and analyze the 

security of the system based on the keys. It is very important that encryption and decryption 

(with the possession of the private key) should be efficient (computationally inexpensive) 

whereas decryption without the private key should be computationally difficult. 

 
There are several types of attacks on cryptosystems. In the weakest form,  called ciphertext-

only attack, the adversary attempts to obtain plaintexts or the decryption key by accessing 

some number of ciphertexts. A cryptosystem that is vulnerable to this type of attack is 

considered to be totally insecure.  If an adversary is in possession of a certain number of 

ciphertexts with the corresponding plaintexts, this is called known-plaintext attack. In a 

chosen-plaintext attack the adversary selects a set of plaintexts and obtains the corresponding 

ciphertexts. This is equivalent to having temporary access to the encryption machine without 

accessing the key. If the adversary has temporary access to the decryption machine (but not the 

private key), then she can choose a set of ciphertexts and obtain the corresponding plaintexts. 

This is called chosen-ciphertext attack.  

 

Symmetric-Key Cryptosystems 
 

Although this module will focus on the more modern notion public key cryptosystems, we will 

have a brief discussion and a few examples of symmetric-key, or classical, cryptosystems as 

well.  As defined earlier, in such systems the encryption and decryption keys are either the 

same or one is easily obtained from the other.  Therefore, both keys must be kept secure.  

Below are a few examples of symmetric-key systems. 

 

Example  Let A 0 1 1{ , ,..., }na a a  be an alphabet of size n ,and let  0 k n  .  The encryption is 

obtained by shifting every symbol in a message by k positions modulo n, i.e. ( )modi i k na a  .  

This is called a shift cipher. For the English alphabet, 26n  and we can identify each letter 

with numbers 0, 1,..., 25A B Z    for the sake of convenience. We can then convert a 

message to a sequence of numbers and do encryption and decryption with integers using 

addition modulo 26. If for example, 3k   (this is often called the Caesar cipher) the message 

(plaintext) NEWYORK is converted to the number 13042224141710 (where we write 04 for 4) 

which is encrypted as 16072502172013 (using addition mod 26) which corresponds to the 

ciphertext QHZCRUN. Decryption is done by subtracting 3 modulo 26 (equivalently adding 23 

mod 26).  Note that the encryption and decryption keys are the same for the shift cipher.  

What is the security of the shift cipher? Clearly, there are only 26 possible keys and it is not 

difficult to test them all. So a brute force, exhaustive search on the key space is possible 

because it is so small. Therefore, the system is vulnerable to ciphertext-only attack (remember 

we assume that the adversary knows the system being used). Also note that, the chosen-

plaintext attack  breaks the system immediately. 

 

Problem 2:   Is there a value of k for the shift cipher on the English alphabet for which the 

encryption and decryption functions are identical? 

 

The shift cipher is an example of a more general substitution cipher in which a permutation on 

the alphabet is applied to each symbol of a message. A permutation π on  A is a mapping :
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A→A that is one-to-one and onto. Therefore, a message 0 1 1( , ,..., )nm m m m   is encrypted as 

0 1 1( ) ( ( ), ( ),..., ( ))nc m m m m      .  A permutation π is the encryption key, and its inverse π
1  is the decryption key. 

 

Problem 3: What is the size of the key space for the substitution cipher on the English alphabet? 

 

Although the key space for a  substitution cipher may be too large to do an exhaustive search 

for the key, there is another technique that is usually effective for breaking this system. It 

makes use of the known frequencies of letters for a given alphabet. The following table gives 

relative approximate frequencies of single characters in English alphabet in two ways [9], [13]. 

 

By Letter  By Frequency 

Letter Frequency Letter Frequency 

A .082 E .127 

B .015 T .091 

C .028 A .082 

D .043 O .075 

E .127 I .070 

F .022 N .067 

G .020 S .063 

H .061 H .061 

I .070 R .060 

J .002 D .043 

K .008 L .040 

L .040 C .028 

M .024 U .028 

N .067 M .024 

O .075 W .023 

P .019 F .022 

Q .001 G .020 

R .060 Y .020 

S .063 P .019 

T .091 B .015 

U .028 V .010 

V .010 K .008 

W .023 J .002 

X .001 X .001 

Y .020 Q .001 

Z .001 Z .001 

 

Moreover, it is useful to know the frequencies of the most common bigrams and trigrams. 

Those frequencies in order are as follows: 

 

Bigrams: th, he, in, en, nt, re, er, an, ti, es, on, at, se, nd, or, ar, al, te, co, de, to, ra, et, ed, it 
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Trigrams: the, and, tha, ent, ing, ion, tio, for, nde, has, nce, edt, tis, oft, sth, men 

 

 

Problem 4: Given that the following text is encrypted using a substitution cipher, decrypt the 

ciphertext and determine the encryption key (permutation). There are no spaces or punctuation 

marks in the text. 

 

FOEWZKNTZGKSBLNTZJOZZFGMEVNTZEVNHXLTVKYSNTGOATNNTVNHNQGO

DYTVPZVWLGDONZDSFGIKVXNHXVDVIIDHXVNHGFLNTZKLVXKSINGLSLNZEV

FYGNTZKVIIDHXVNHGFLGMFOEWZKNTZGKSIKGPZYNTHLAKZVNEVNTZEVNH

XHVFQKGFA 

 

Example: One-time pad (Vernam cipher). For this cipher the alphabet is the binary alphabet 

A={0,1}. (Since data of any kind is stored and processed as binary digits in computers, in 

principal the binary alphabet is sufficient for all situations). The message space, ciphertext 

space and key space are all equal to A*, the set of all finite binary sequences.  A key k  to 

encrypt a message m  is chosen randomly and has the same length as m . The encryption is the 

bit-wise addition of m  and k modulo 2 denoted by  . So, the ciphertext is c m k  .  For 

example, if 0011010110m   and 1001000101k   then 1010010011c  . When the keys are 

chosen randomly and they are used only once, this cryptosystem is unconditionally secure 

against ciphertext-only attack. More specifically, if the length of the messages is n , then the 

size of the key space for a single message is 2n and the average complexity of searching the 

key space is O( 2n ). Violation of this requirement (using a key only once) by the Russians 

during World War II let US National Security Agency crack Soviet messages with VENONA 

project [9], [15].  

 

Problem 5: Explain what happens if two messages are encrypted with the same key in Vernam 

cipher.  

 

Although the Vernam cipher has unconditional security, it has a drawback: Key size is very 

large. To achieve the security a key needs to be used only once, needs to be as large as the total 

length of all messages to be sent, and needs to be exchanged securely. These requirements 

make this system not very practical in many situations. 

 

There are many other examples of symmetric key ciphers. You can see more examples in 

books on cryptography such as [4],[9],[11],[13]. 

 

Elementary Number Theory for the RSA Cryptosystem 
 

The RSA cryptosystem is based on some elementary facts from number theory. In this section 

we introduce and review some material from elementary number theory needed for the RSA 

cryptosystem. The reason number theory is useful and needed is that all messages will be 

regarded as numbers modulo some integer. It is not difficult to convert text messages to 

numbers. We will also review how to do that.  

 

You are familiar with the set of integers, denoted by . There are two basic operations on 

integers addition and multiplication. Note that subtraction is nothing but adding the negative 
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(the additive inverse) i.e., x y  is the same as ( )x y  .  The ratio of two integers is not 

always another integer, so division is not a well defined binary operation on (non-zero) integers. 

Similarly to subtraction, division is a form of multiplication, multiplying with the reciprocal. 

So, 
x

y
 is the same as 

1
x

y
 where 1 1

y
y

   is the multiplicative inverse of y . One property that  

 lacks is not every non-zero element of has a multiplicative inverse (reciprocal) in . For 

instance, the inverse of 2 is  
1

2
 but it is not an integer. Algebraically, the set of integers has the 

following properties with the operations of + and  . 
 

1. There is an identity element for +, namely 0: 0 0x x x     for all x in . 

2. +  is associative, i.e., ( ) ( )x y z x y z     for all integers , , .x y z  

3. + is commutative, i.e. x y y x    for all ,x y  in . 

4. Every x in  has an additive inverse: ( ) 0x x    

5. Multiplication is associative: ( ) ( )x y z x y z      for all integers , , .x y z  

6. There is an identity element for multiplication, namely 1: 1 1x x x     for all x in . 

7. Multiplication is commutative: x y y x    for all ,x y  in . 

8. Multiplication distributes over addition: ( )x y z x y x z       for all integers , , .x y z  

9. If 0x y   for any ,x y  in , then either 0x  or 0y   (or both). 

 

A set with two binary operations that satisfy these properties is called an integral domain. If, in 

addition to all of  these properties, every non-zero element has a multiplicative inverse the 

system is called a field. Some examples of fields are , the set of rational numbers; , the set 

of real numbers; and , the set of complex numbers. If all the properties except for the last 

one are satisfied it is called a ring (more accurately, a commutative ring unity). Another way of 

stating property 9 is to say that does not have any zero divisors. There are algebraic systems 

in which this property fails, i.e. there exist non-zero elements a and b  such that 0a b  . Such 

elements are called zero divisors. Examples of rings that are not integral domains (rings with 

zero divisors) are integers modulo n , for some non-prime integer n . We will discuss these 

structures in more details in the next few pages. 

 

Computational Complexity of Basic Arithmetic Operations 

 

Since computational complexity is a fundamental notion in cryptography, it will be useful to 

review running times of basic arithmetic operations. For number theoretical algorithms and 

operations, the measure of efficiency is usually considered to be the number of bitwise 

operations involving single-bit arithmetic. For this reason, the size of the input for number 

theoretical algorithms is taken to be number of bits needed to store (or represent) the number. 

For an integer n , the number of bits needed to store it in computer memory is 2log 1n    . For 

example, the binary representation of 13n   is 1101 and 2log 13 1 3 1 4      . Since the 

big-O notation is not sensitive to the base of the logarithm, and additive (and multiplicative) 

constants, we sometimes write the size of the input as log( )n  when analyzing the asymptotic 

running time of a number theoretical algorithm whose input is an integer n . For two integers 
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,x y   computing their sum takes at most O( n ) bit operations, where n  is the maximum of the 

number of bits to represent these numbers, and their product takes at most O( 2n ) operations. 

 

 

Divisibility, Prime Numbers and the Euclidean Algorithm 

 

For  ,a b we say that a divides b ,  denoted |a b , if there exists c such that b c a  . In 

this case, a  is called a factor, or divisor of b . For example, 3|21 since 21=3  7.  It is easy to 

show that for any n , | 0n , |n n , and 1| n . 1 and n  are called trivial factors of n . An 

integer 1p   that does not have any non-trivial factors is called a prime. Note that 1 is not a 

prime by definition. A basic property of divisibility is the following: 

 

Problem 6: Suppose |a x and |a y . Show that  | ( )a x n y m   for any integers n and m . 

 

This means that if a  divides both x and y , then it also divides any of their linear combinations. 

 

Prime numbers are very important in number theory because of  

 

Fundamental Theorem of Arithmetic: Every integer 2n  can be written as a product of 

powers of primes in a unique way (unique up to the ordering of the factors) in the form 
1 2

1 2
krr r

kn p p p  where 1 2, ,..., kp p p are primes and 1 2, ,..., kr r r  are positive integers. 

 

This theorem says prime numbers are building blocks of integers. Any integer is made up of 

prime numbers. It also says that any integer greater than 2 is either a prime itself, or divisible 

by a prime. It is well known that there are infinitely many primes. Euclid may have been the 

first one to prove this result around 300 BC.  There are many proofs of this important fact. 

Even after more than 2000 years, Euclid’s original proof remains to be a most elegant 

argument. In addition to its elegance and pure number theoretical significance, this classical 

result is crucially important for the security  of the RSA cryptosystem. 

 

Problem 7: Show that there are infinitely many primes. 

 

 If  |a x and |a y then a is called a common divisor of x  and .y  For example, 4 is a common 

divisor of 24 and 36, so are 2, 6 and 12. Among the common divisors of two numbers there is a 

largest one, called the greatest common divisor (gcd). We denote the greatest common divisor 

of two integers x  and y  by gcd( , )x y or simply ( , ).x y  Therefore, (24,36) = 12. If the gcd of 

two integers is 1, then they are called relatively prime. For example, 4 and 9 are relatively 

prime integers (note that neither is a prime). Another useful result in elementary number theory 

is the following theorem, called the Division Algorithm. 

 

The Division Algorithm:  Let n  and m be integers such that  0m  . Then there exist unique 

integers q and r  such that n mq r  where 0  | | .r m  Here q  is called the quotient, and r  

is called the remainder when n  is divided by m . 

 

For example, when 24 is divided by 9 the quotient is 2, and the remainder is 6. We write, 
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24=9  2+6. If -24 is divided by 9, then the quotient is -3 and the remainder is 3. If 24 is divided 

by -9, then the quotient is -2 and the remainder is 6. In all cases the remainder is less than the 

absolute value of the divisor.  

Actually, it is a little misleading to call this theorem an “algorithm” because it does not tell us 

how to find the quotient and remainder, though you are familiar with the long division  of 

integers which gives you those numbers. Nevertheless, this result is a key ingredient for a 

number of important number theoretical algorithms such as the Euclidean algorithm. When you 

want to prove that one integer x  divides another one, say ,y  it is a common proof technique to 

apply the division algorithm to write y xq r   and try to show that the remainder must be 0. 

There is another useful description of the gcd of two numbers. It is  the common divisor of the 

two numbers that is divisible by any of the common divisors. You may want to try to prove 

that this description of gcd is equivalent to the previous one. Another useful property of gcd is 

that it can be written as a linear combination of the numbers. 

 

Theorem: Let ( , ).d x y Then there exist integers a  and b  (not necessarily unique) such that   

.d ax by   

There is a well known procedure called the Euclidean algorithm to find the gcd of two given 

integers, and to express it as a linear combination. It is described as follows: 

Given two integers x  and y (without loss of generality we may assume 0 x y  ), apply the 

division algorithm successively as follows: 

 

0 0y xq r   ( divide  y by x  and get 00 r x  ) 

0 1 1x r q r   ( divide  x by 0r  and get 1 00 r r  ) 

0 1 2 2r rq r   ( divide  0r by 1r  and get 2 10 r r  ) 

… 

 

Continue in this manner each time dividing the divisor from the previous step with the 

remainder from the previous step, until the remainder is 0. This process must stop at some 

finite step because the remainders are getting strictly smaller at every step, so the process 

cannot continue indefinitely. Therefore, we are going to stop at some step, say 

1 2k k kr r q   where the remainder is 0. The previous remainder 1kr   is the gcd. By back-

substitutions the gcd can be expressed as a linear combination of the integers x  and .y  We 

illustrate this algorithms with an example. 

 

Example: Let 28x   and 48.y   Applying the division algorithm successively until the 

remainder is 0, we get 

48 = 28  1+20 

28 = 20  1+8 

20 = 8  2+4 

 8  = 4  2+0 

Therefore, (28,48) = 4.  Next, the following substitutions let us express the gcd as a linear 

combination of 28 and 48. 

 

4 = 20+(-2)  8 = 20+(-2)  (28+(-1)  20) = 3  48+(-5)  28 
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Problem 8: Show that if  |a bc    and   ( , ) 1,a b   then  |a c  .   

(Hint: Use the fact that  1 can be  written as a linear combination of a  and b ) 

 

What is the complexity of the Euclidean algorithm? The good news is that it is an efficient 

algorithm, i.e., the worst case running time is a polynomial in the size of the input (number of 

digits needed to represent the integers x  and y ). To determine the complexity of the 

Euclidean algorithm, we need to determine the number of steps it runs in the worst case. Since 

at every step we are performing the division algorithm, we can multiply the cost of division 

with  the number of steps to obtain the total worst-case running time. It is proven that the 

number of steps in the Euclidean algorithm is at most O( log( )x ) where x  is the smaller input 

number to the algorithm [4]. The worst-case running time of each step (which is a division) is 

O( log( ) log( )x y ). Altogether, the algorithm does not take more than O( 3log ( )y ). This is a 

polynomial in the size of the input, hence it is an efficient algorithm. Through a more careful 

analysis that takes into account the fact that the successive divisions in the algorithm involve 

smaller and smaller numbers, it  is possible to prove that the running time of the Euclidean 

algorithm is in fact O( log( ) log( )x y ) [4]. This, however, does not change the fact that it is a 

polynomial time algorithm. It is crucial that the Euclidean algorithm is a polynomial time 

algorithm for the implementation of the RSA cryptosystem. 

 

Problem 9: Implement a version of the Euclidean algorithm in your favorite programming 

language or computer algebra system. (Most computer algebra systems have this algorithm 

implemented. Your goal is to do it for yourself). 

 

Integers Modulo n 

 

Modular arithmetic is a fundamental tool for the RSA cryptosystem. Everyone is familiar with 

modular arithmetic: the clock arithmetic is an example of modular arithmetic with modulo 12.  

For  example, 5 hours after 9 am is 2 pm, because 9 + 5 is 2 modulo 12. In this system 12 is the 

same as 0. One can do this kind of arithmetic with an arbitrary modulus n , for any positive 

integer .n   The set of integers mod n  is denoted by  n    and it contains the elements  

{0,1,2,..., 1}n  ( n  is the same as 0). Addition and multiplication are done in the usual way, 

except that the result is reduced  mod n . For an integer  x , x mod n   means the remainder 

when x  is divided by n . For example, 56mod9 is 2. So,  7 8mod9 2,   7 8mod9 6,   and 
26 mod9 0.  We also use the notation moda b n (read a  is congruent to b  mod n ) to mean 

a  and b has the same remainder when divided by n . For example, 12 3mod9 and 

12 21mod9 . 

 

n  with addition and multiplication  mod n always satisfies axioms 1-8 on page 8. Therefore, 

it is always a ring (more accurately, a commutative ring with unity).  However, the last axiom  

does not always hold true. For example, in 10  we have 2 5 0,   but neither 2 nor 5 is 0, so 

they are zero divisors. Therefore, n  is not always an integral domain. Notice that 2 and 5 do 

not have multiplicative inverses. In fact, zero divisors never have multiplicative inverses. 

 

Problem 10: Show that a zero divisor in n  does not have a multiplicative inverse. 
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Some of the non-zero elements of  10  though do have multiplicative inverses (0 never has a 

multiplicative inverse, so when we talk about multiplicative inverse we are talking about non-

zero elements).  For example, 11 1,   2 does not have one, 13 7,   4,5 and 6 do not have 

inverses, 17 3,   8 does not have one, and 19 9.    Do you see any pattern? What property do 

the invertible elements have in common, and what property do non-invertible elements have in 

common?  We have the following complete characterization of the invertible elements in   n . 

 

Theorem: A non-zero element a in n  is invertible if and only if  ( , ) 1.a n   

Proof:  Since this is an “if and only if” statement, we have two directions to prove. In the 

forward direction we assume that a is invertible, and try to show ( , ) 1a n  . Since a is 

invertible in n , there exists b in n such that 1mod .ab n  This means that  1ab nt   for 

some integer ,t  or ( ) 1.ab n t    This equation implies that ( , ) 1a n  because any common 

divisor of  a  and n  must also divide their linear combination ( )ab n t   which is 1. Hence  a  

and n cannot have any divisors larger than one. This proves the forward direction. 

For the reverse direction, we assume that ( , ) 1a n    and try to show a  is invertible in n . 

Since ( , ) 1a n  , there exist ,x y    such that  1ax ny  . Reducing this equation mod n  we 

obtain  1modax n . Hence  a is invertible in n . 

 

Euler’s Phi Function:  From the previous theorem, we know exactly which elements in n  

have multiplicative inverses. Is it possible to determine the number of invertible elements in 

n  for an arbitrary n  without having to list them all? It turns out that the answer is yes. There 

is a well known function  that denotes this quantity. It is called Euler’s phi function and is 

denoted by ( )n  (this function is also called totient of n ). So, 
1( ) #{ :  exists in },n nn x x    number of elements between 1 and 1n  that are relatively 

prime to n  (hence invertible in n ). For example, (9) 6,   and (10) 4.   

 

Problem 11:  Find (11). What is ( )p for a prime number ?p  

 

The set of invertible elements in n is denoted by  *

n
. Therefore, ( )n is the size of *

n
. 

For example, *

9 {1,2,4,5,7,8},  and *

10 {1,3,5,7}.  The set *

n
 is closed under 

multiplication. That is, if *, na b  then so is .ab This is not hard to see: if a  and b are both 

relatively prime with n then so is .ab Because, this means a  and n do not share any common 

prime factors, neither do b  and n . Then, the product ab does not contain any prime factor 

common with n . (Here we are using the fact that if ( , ) 1d a n  there is a prime dividing d). 

In the language of abstract algebra, the set *

n  is a group with the operation of multiplication 

( mod n ). It satisfies the following axioms: 

 

1. Multiplication mod n  is associative: ( ) ( ) for all , , na b c a b c a b c       

2. There is a multiplicative identity, namely 1: 1 1  for all na a a a      

3. Multiplication mod n  is commutative:  for all , na b b a a b     
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4. Every element na  has a multiplicative inverse denoted  by 1a : 1 1a a   

 

Note that these four axioms are the same as the first four axioms on page 8, except that they 

were for the operation of addition for a ring. Therefore, integers mod n  n  is a group with the 

operation of addition. Sometimes we write this as  ( , )n  is a group. A ring has two operations, 

addition and multiplication. A group has only one (which could be called either addition, or 

multiplication, or even something else). We also write ( , , )n    is a ring and *( , )n   is a group. 

 

Taking exponents mod n is an extremely important operation in RSA cryptosystem. Now, we 

will investigate this operation and its properties. To start off, let us compute powers of 2  

mod9:  1 2 3 4 5 62 2,  2 4,  2 8 1,  2 2 7,  2 4 5,  2  -8 1.             We say that the order 

of 2 is 6 because 6 is the smallest positive integer r  such that 2 1mod9.r   Also note that 

powers of 2 give all the elements in this group. We say that 2 is the generator of the group 
*

9( , ) and we call the group *

9( , ) a cyclic group. 

 

Problem 12: Find the orders of other elements in *

9( , ) . Does  *

9( , ) have any other 

generators? 

 

From the result of the previous exercise we see that 6 *

91,  for all .a a  We also recall that 

(9) 6,    (9) *

9i.e., 1mod9 for all .a a    It turns out that this is not an accident, rather it is 

a special case of a famous theorem in elementary number theory, called Fermat’s little theorem 

(more accurately, it is called Euler’s generalization of Fermat’s little theorem). We state it 

without a proof since the proof uses some group theory that is beyond the scope of this 

module). 

 

Theorem: ( ) * 1mod  for all .n

na n a    Stated slightly more generally, the theorem says that 

for an integer a  that is relatively prime with n , we have ( ) 1mod .na n   

 

When the integer n happens to be a prime in the above theorem, we obtain the special case that 

is called Fermat’s little theorem. 

 

Fermat’s Little Theorem:  For a prime number p not dividing ,a   1 1mod .pa p   

 

Recall that for a prime number ,p ( ) 1 p p   , so this is indeed a special case of the previous 

theorem. This theorem does have an elementary proof. 

 

Problem 13: Prove the Fermat’s little theorem following the hint below: 

 

a) Show that the elements of the set { ,2 ,..., ( 1) } pS a a p a   are non-zero, and there 

are no repetitions. 

b) Part a) shows  that 
*

pS  . Therefore, 1 2 ( 1) (2 ) ( 1) mod .p a a p a p       Explain 

how this proves the theorem. 
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In addition to ( ) 1 p p   for a prime ,p the Euler’s phi function has two more properties that 

make it possible to compute ( ) n for any positive integer n .  

 

 

Theorem:  

a) For a prime ,p and a positive integer ,r 1 1( ) = ( 1) r r r rp p p p p      

b) If  ( , ) 1m n   then ( ) ( ) ( )mn m n   . We say that Euler’s phi function is multiplicative. 

Part a) can be proven by an elementary counting argument, but part b) is harder to prove. 

 

Problem 14: Prove part a) of the above theorem. 

 

Given the last theorem and the fundamental theorem of arithmetic, we can now compute ( ) n

for any positive integer n . First, obtain the prime factorization of n , say 1 2

1 2
krr r

kn p p p  . 

Then, 1 2 1

1 2 1( ) ( ) ( ) ( )k kr rr r r

k kn p p p p p       , and the each term in the last product can be 

computed using part a) of the above theorem.  For example, 

(10) (2 5) (2) (5) (2 1)(5 1) 4,  and           
3 2 3 2 3 2 2(4725) (3 5 7) (3 ) (5 ) (7) (3 3 ) (5 5) (7 1) 2160.                

 
 

Modular Exponentiation 

Securely implementing the RSA cryptosystem requires modular exponentiation with extremely 

large bases, modulus and exponents, i.e., computing numbers of the form modea n  where 

, ,  and na e  are very large numbers. On the one hand these numbers need to be large for  

security reasons, on the other hand  it should be easy (efficient) to compute such exponents for 

the practicality of the system. We now discuss how expensive it is to compute an expression of 

the form  modea n . Of course ea  means a a a  where a is multiplied with itself 1e  times. 

As discussed earlier, multiplication of two k-digit numbers takes O( 2k ) bit operations (where 

2log ( )k n ). Since we do this e times, the total cost will be  O( 2ek ). Is this a polynomial in 

the size of the input? Unfortunately, it isn’t. Since the  input size for the number e  is  2log ( )e , 

the term e  is exponential, not polynomial, in the size of the input: 2log ( )2 .ee   Therefore, the 

straightforward method of multiplication is not an efficient way for modular exponentiation 

with large numbers. 

 

Fortunately, there is a more clever way of computing such exponents. It is called square and 

multiply method. The idea for this method comes from that fact that if we use the binary 

representation of the exponent e we may reduce the number of operations significantly. Let  

0

2
t

i

i

i

e e


 be the binary expansion of  e  where  2log ( )t e     and each 
ie  is a 0 or 1. Then, 

0

2
2 2 2

0 0 0 , 1

( )

t
i

i i i i
i i i

i

t te
e ee

i i i t e

a a a a a

    


       



 

 15 

Since 
12 2 2( )

i i

a a


  , this product can be calculated  using at most t  modular squarings and t  

modular multiplications. Therefore, the following algorithm computes modea n . 

 

 

 

 

Square and Multiply Algorithm: 

           Input: 
0

 0 ,  and integer 0  with binary representation 2
t

i

n i

i

a e n e e


      

           Output: modea n  

 

1. Set 1,  and s aP   

2. For i  =0  to t do 

2.1 2If  0,  set modi s s n   

2.2 If 1,  set modie P P s n    

 3.  Return .P  

As an example, let us compute 454 mod55  using this algorithm.  First, the binary  

representation of 45 is 101101. Next, compute successive squares of 4 mod 55: 
2 3 4 52 2 2 2 2 2 2 2 24 16,  4 16 36,  4 36 31,  4 31 26,  4 26 16.           

Finally, multiply together those powers that correspond to a 1 in the binary representation of 45: 
5 3 2 045 2 2 2 24 mod55 4 4 4 4 16 31 36 4mod55 34         

Notice that we did 5 squarings mod 55 and 3 multiplications mod 55. The naïve method would 

have performed 44 multiplications. Also, reducing results mod n at every step of the 

computation, as opposed to reducing the final result at the end, helps us save memory 

considerably. In fact, memory overflow is likely with large numbers if we do not reduce the 

results at every step because exponential functions grow very fast. The computations in this 

example could be organized in a tabular form as follows: 

 

i  0 1 2 3 4 5 

ie  1 0 1 1 0 1 

s  4 24 16  216 36  236 31  231 26  226 16  

P  4 4 36 4 34   31 34 9   9  16 9 34   

 

Now, let us formally determine the complexity of the square and multiply algorithm. As we 

already observed, there are at most t squaring and t multiplications. Since each of these 

operations take at most O( 2t ) bit-operations, the total cost will be proportional to 3t , hence the 

total cost is at most O( 3t ), a polynomial in the size of the input 2log ( )t e    . Therefore, this 

algorithm is indeed an efficient algorithm. The difference between the two methods in number 

of operations needed gets more dramatic as the exponent increases. For example, if 710 ,e  the 

straightforward method requires ten million multiplications (more accurately 710 1 ), whereas 

the efficient method requires at most 
7

22 log (10 ) 46    squaring or multiplications.  
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Many computer algebra systems have both methods implemented for modular exponentiation. 

To see the difference we execute examples to compute modea n  for various values of the 

parameters with each method in the computer algebra systems Maple and Magma. Magma has 

an online calculator that is free to use for computations up to 20 seconds The web address of 

the Magma calculator is http://magma.maths.usyd.edu.au/calc/. Try the following on Maple 

and Magma and see the results for yourself. Below is what I obtained. 

 

 

Modular Exponentiation in Maple: 

The naïve and inefficient way of computing modea n  in Maple has the same syntax. We enter 

the values and time the operation as follows:  

>  

>  

Error, numeric exception: overflow 

 

Here, the exponent is so big that the computation causes a memory overflow, meaning the 

numbers are get so large that they cannot be stored in the memory. However, the efficient 

square and multiply method easily finishes the execution. The Maple command for this method 

is  Power(a,e) mod n. 
>  

                                     371667798 

Now,  let’s try examples where both methods can finish and compare the times they take. 

Study the Maple code below to see how to time a computation. 

>  

>  

 

111182625 

11.313 

Here, we used the same values of the parameters except that we changed the value of e that 

caused problems. The result shows that this computation took about 11.31 seconds of CPU 

time (and the result of the computation is 111182625). 

Now, the same computation using the Power function: 

 
>  

 

111182625 

 

The same result but the time it took shows 0, which probably means it took so little time that 

the time( ) function’s precision is not big enough to capture a non-zero value. 

 

Modular Exponentiation in Magma 

 

Now, we perform the exact same computations in Magma.  Magma’s command to do  the 

naïve exponentiation is a^e mod n; and the efficient one is by Modexp(a,e,n);  The online 

http://magma.maths.usyd.edu.au/calc/
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magma calculator automatically gives the amount of time the computation takes. If you happen 

to have Magma installed on a computer you can access, to time a computation simply put time 

in front of the computation, like  

> time a^e mod n; 

The input  

a:=3567;  e:=24556677888111;  n:=10^9+27; 

a^e mod n; 

gives the output 

>> a^e mod n;  

Runtime error in '^': Argument 2 (24556677888111) is too large 

Total time: 0.140 seconds, Total memory usage: 7.19MB 

Meaning the numbers get too large to be handled by the program. 

The Modexp command on the other hand has no trouble computing this quantity. The 

command 

Modexp(a,e,n); 

returns 

371667798 

Total time: 0.140 seconds, Total memory usage: 7.19MB 

The same answer as Maple, and it took 0.14 seconds. (Magma also tells you how much 

memory is used). The input 

a:=3567;  e:=10^7+5*10^6+50067; n:=10^9+27; 

a^e mod n; 

produces the output 

 111182625 

Total time: 4.059 seconds, Total memory usage: 137.02MB 

The same answer as Maple, produced in 4.059 seconds. 

Finally, the same exponential with the efficient method is as follows: 

Input:     Modexp(a,e,n); (with the above values of a, e, n) 

Output:  111182625   

              Total time: 0.140 seconds, Total memory usage: 7.19MB 

This time it only took 0.14 seconds. 

 

Problem 15: 

Implement the square and multiply algorithm in your favorite programming language. Be sure 

to test it. 

 

Public Key Cryptography and the RSA Cryptosystem 
 

A major drawback of symmetric key cryptosystems is that the keys must be exchanged first 

between the two parties over a secure channel before they can start using an encryption scheme. 

This is often not practical. The problem becomes even more difficult if many different parties 

want to communicate securely, as is the case with online transactions that are so common 

today.   The idea of public key cryptography is first introduced by W. Diffie and M. E. 

Hellman in their seminal paper [5]. It eliminates the need for advance key exchange. In a 

public key cryptosystem only the decryption key needs to be kept secret. The encryption key is 

made public. Unlike symmetric key cryptosystems, it is (should be) infeasible to obtain the 

decryption key (the private key) from the encryption key (public key). Another requirement is 

that although the public key is not secret, its authenticity needs to be protected. An adversary 
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should not be able to alter or replace the publicly announced encryption key, otherwise she 

would be able to decrypt messages not intended for her. 

 

If Alice and Bob want to communicate securely using a public key cryptosystem, one of them, 

say Bob, generates a pair of keys (e,d) where e is the public key, and d is the private key. Bob 

then announces the public portion of the key (e) (for example, he publishes it on his web site). 

Alice then obtains Bob’s public key and uses it to encrypt  her message to Bob, i.e., she locks 

her box with that key. Even if Eve intercept Alice’s encrypted message she won’t be able to 

decrypt it because she does not have access to Bob’s private key, neither can she determine the 

private key from the public key. Upon receiving Alice’s encrypted message, Bob decrypts it 

(unlocks the box) using his private key. 

 

RSA Cryptosystem 

 

Shortly after the seminal paper on public key cryptography [5] which introduced the idea but 

did not give any specific, practical implementation, the RSA cryptosystem was proposed by 

Rivest, Shamir, and Adleman (hence the acronym) in [12]. It is still a widely used 

cryptosystem.  It uses most of the facts from elementary number theory reviewed in this 

module.  First, messages are converted to numbers (integers), then the numbers are 

manipulated according to the prescribed encryption scheme. Here is the description of the RSA 

cryptosystem. 

 

The RSA Algorithm 

 

1. Bob chooses two large distinct primes  and ,p q  and computes  .n pq   

2. Bob chooses a random integer e  such that  ( , ( )) 1e n  . 

3. Bob finds d such that   1mod ( )ed n . 

4. Bob makes n  and e  public, and keeps , ,p q d private. 

5. Alice obtains public information revealed by Bob. 

6. To encrypt her message ,m  Alice computes modec m n   and sends c to Bob. 

7. Bob decrypts c  (i.e. obtains m ) by computing mod .dc n  

 

 

In this set up, the integer n is called the RSA modulus, e is called the encryption exponent and d 

is called the decryption exponent. 

  

Let us now analyze this system and justify that it works and it is a feasible and secure system. 

First,  note that all computations are done mod ,n and a message to be encrypted is converted to 

a number .m n  (If an original message is larger than what can fit into single number mod ,n  

it is divided into smaller blocks.)  Since n
 
is a product of two distinct primes,  

( ) ( ) ( ) ( ) ( 1)( 1).n pq p q p q         Also, since ( , ( )) 1,e n   e  is invertible  mod ( ),n  

hence the number d  in step 3 exits (and is unique).  Both  and m c and are numbers mod n , so 

the ciphertext does not necessarily get bigger than the plaintext (it may actually get smaller). It 

is just converted to another number mod n . A final and important step to justify the algorithm 

is to show that decryption works, i.e.,  mod ,dc m n equivalently, mod .edm m n  
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It turns out that we need to consider two cases to prove this fact:  ( , ) 1m n   and ( , ) 1.m n   

Let us  suppose that ( , ) 1.m n   Then by Fermat’s little theorem  we have ( ) 1mod .nm n    On 

the other hand, since 1mod ( ),ed n  there exists s  such that  1 ( ).ed s n   Putting all 

this together we obtain: 
1 ( ) ( )( ) (1) mod .ed s n n s sm m m m m m n        

The same result can also be obtained in the case  ( , ) 1.m n  with some more work. However, 

let us observe that for large prime primes  and ,p q  it is much more likely that ( , ) 1m n   rather 

than  ( , ) 1m n  for an arbitrary number .m n   Therefore, we skip the proof for that case.   

 

Problem 16:  Give a justification for the last claim, i.e., show that for large primes  and ,p q  an 

arbitrary integer  mod  ,  ,m n n pq is much more likely to be relatively prime with n  than not.  

 

Example:  

To set up an RSA encryption system to communicate with Alice securely (for that matter with 

anybody else who might be interested) Bob chooses the following primes: 

 9776698225631087 and  33267710468717971p q   

He then computes  

325248365910323724697873293164477n pq   

and  ( ) ( 1)( 1) 325248365910323681653464598815420.n p q      Next, he chooses the 

encryption exponent 173830646339602015143190932502207e  and computes the 

corresponding decryption exponent  1 mod 185024181617369988056414344042783.d e n   

Finally, he publishes the values of e and n, on his web site, and keeps the rest of the values 

private. 

 

Alice downloads those values from Bob’s web site, and she has an important message to 

communicate to Bob. She wants Bob to be the first person to hear the big news that Fermat’s 

last theorem has just been proven (by Alice). She does not want to make this exciting 

information public yet before she is absolutely sure. So she wants to send the message 

encrypted. Here is what she does: 

 

Her message in text form is “Big news: Fermat's last theorem is proven!”. First she converts 

her message into a numerical form. Alice and Bob use Maple and its method of  converting 

messages back and forth between text and numerical forms. (This method is explained next 

when we show the details of the implementation using Maple). Since her message in numerical 

form occupies more than 33 digits, she breaks it up into blocks of length 33 or less. She gets 4 

blocks of numerical data as follows: 

1 2

3 4

71213494078438978110396172982170,   = 151614105658550004853057724619273

= 99890861130487024287871839566628, and = 531.

m m

m m


 

She then encrypts each piece of her message using Bob’s public encryption key and obtains: 

 

1 1

2 2

3 3

4 4

= mod = 274550104966733060872501653048215

= mod = 115962549954362347388038785672652

= mod = 163931895700108966814292922877385

= mod = 121158951233957499726842760892188

e

e

e

e

c m n

c m n

c m n

c m n
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Upon receiving these four pieces of ciphertext, Bob decrypts them using his private key: 

 

1 1

2 2

3 3

4 4

= mod = 71213494078438978110396172982170

= mod = 151614105658550004853057724619273

= mod = 99890861130487024287871839566628

= mod =531

d

d

d

d

m c n

m c n

m c n

m c n

 

 

We see that he correctly obtains the plaintext in numerical form. Finally, he converts it to the 

corresponding text message to read the secret message: “Big news: Fermat's last theorem is 

proven!” 

 

Remarks and Issues on RSA Cryptosystem  

 

Before we show the details of how to implement the RSA system on Maple (with the above 

example) there are several important questions we need to ask about its practicality and 

security.  Notice that the very first task Bob needs to take care of is generating “large” primes. 

Earlier we learned that there are infinitely many primes. So, there is a sufficient supply of those. 

Still, from the implementation point of view we need a practical (efficient) way of finding 

them.  The prime number theorem (PNT) says that they are relatively dense among the integers. 

The theorem was first proven by Hadamard [8], but many improvements, refinements and 

simplifications followed over the next century. See [7] for an excellent survey on the subject. 

Roughly speaking PNT says that if a number m is randomly selected in the order of N, then the 

probability of m being a prime is about 1
ln( )N . For example, around  10 6  approximately one out 

of every 14  numbers is prime. Therefore, one can generate large random numbers, and check 

whether they are in fact primes. PNT ensures that before too long we should hit a prime. But 

how easy or expensive is it to check whether a given number is actually a prime? There are 

many fast probabilistic algorithms that decide with any prescribed level of accuracy. See [11, 

chapter 4] on prime number generation and primality tests. In 2002, a deterministic polynomial 

time algorithm was found to test whether  a given number is a prime [1]. This was a major 

breakthrough  mostly for theoretical reasons. The algorithm was discovered by two 

undergraduates. A nice survey article on the subject is [3]. So, the prime number generation is 

completely solved for both theoretical and practical purposes. 

 

Problem 17: Given an integer n, a simple method to test whether it is a prime is to check all 

integers between 2 and n-1 to see if they are divisors of n. As soon as you find a divisor  you 

can stop and declare the number to be composite (non-prime). Show that this is not an efficient 

algorithm, i.e. show that the number of steps is exponential in the size of the input. An 

observation that improves the running time of this algorithm is it suffices to check the numbers  

up to n  (rather n-1) since if n has a nontrivial factor at all, it must have one that is less than 

or equal to n  (since factors come in pairs). Show that, this improved algorithm is not 

efficient either. Finally, implement this algorithm in your favorite programming language.  

 

The next question is, how large should those primes be? There is no fixed answer to this 

question, the answer has been changing by the advances in integer factorization algorithms, 
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and the computing resources. Currently,  512-bit primes (about 155 digits for primes p and q) 

are recommended for long term security. See [11, page 290]  and [9, page 285] for more 

detailed recommendations.  There has been a series of RSA challenges to factor some proposed 

large integers starting with the original authors (see [14], page 154). Although no longer active, 

the RSA challenge web site gives a history of the challenge for  those who are interested. It is 

located at http://www.rsa.com/rsalabs/node.asp?id=2093 and  

http://www.rsa.com/rsalabs/node.asp?id=2094 

 

Next, Bob computes n pq  and ( ) ( 1)( 1).n p q      Multiplication of two integers, even if 

they are large, is computationally efficient (polynomial time in the size of the input), so  no 

problems computing those. He also needs to find an integer e  that is relatively prime with 

( ).n  He can do so by choosing a random integer e  and checking whether it is relatively 

prime with ( ).n If not, he  repeats the process. There are efficient methods for random 

number generation. How about finding gcd of two numbers? Recall that the Euclidean 

algorithm is an efficient algorithm to find gcd of two numbers, so that is practical as well. Then, 

Bob needs to compute the inverse e  of  mod ( ).n  Can this be done efficiently? Again recall 

that the gcd of  e  and ( )n   can be written as a linear combination in the form  ( ) 1ex n y   

and the Euclidean algorithm tells us how to obtain the numbers  and .x y  If we reduce that 

equation mod ( )n  we obtain 1mod ( ),ex n hence mod ( )x n  the inverse of .e So, 

everything Bob needs to compute so far is efficient. 

 

The main computation Alice  needs to do is exponentiation mod .n We have seen that this can 

be done efficiently  by the square and multiply method, so she is okay. Finally, to decrypt a 

ciphertext Bob computes  an exponential mod ,n  again that can be done efficiently. 

 

What about Eve? If she intercepts a message (ciphertext) what can she do to decrypt it? She 

needs d  to decrypt. If she could factor ,n  then she obtains p  and ,q and calculates ( )n . She 

can then compute d  efficiently from e  (remember e  is public). The problem she faces is 

factorization of large integers is believed to be a hard problem: No polynomial time algorithm 

is known for that problem despite much effort to find one (though  that does not mean that one 

can never be found).  However, the prime factors p  and q making up  n need to be large 

enough to ensure security against currently best known attacks and algorithms. Again, 512- bit 

primes with certain properties are currently considered to be safe. 

 

An Implementation of RSA on Maple 

 

We now show step by step details of how to implement RSA cryptosystem on Maple using the 

previous example. First, generate two random numbers in the order of 10 16  and 10 17  (this is 

much smaller than what should be used in practice. This is just a toy example to illustrate the 

method.  A separate Maple file containing all the Maple code in  this module is attached.) 
>  

Then find the next prime after each one of  these random numbers. 
>  

   

To double check whether they are indeed primes, do 
>  

http://www.rsa.com/rsalabs/node.asp?id=2093
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Compute  n   and ( )n .  

>  

      

77 

20 

Let’s see how many digits they have 
  >  

 

 

Generate a random integer that is relatively prime with ( ).n  This may take several trials. 

>  

07 

>  

 

Compute the inverse of e, and double check it 

>  

83 

>  

 

Define the plaintext as a text. 
>  

 

Then convert it to numerical data. Here the method we use is to convert each character 

(including space and punctuation marks) to the corresponding integer. Every character has a 

numerical representation in the computer memory in binary (called ASCII code). If desired, 

that binary number can be converted to the corresponding integer. For example, the ASCII 

code for the letter “A” is  1000001 which can be converted to the integer 65. Maple’s convert 

command gives the numerical value for each letter. For example, 
>  

 

It also does the reverse conversion such as 
>  

 

The following command converts each character in the plaintext to the corresponding integer. 

Each of these digits is considered to be an integer mod 256 by Maple. 
>  
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Next, we need to break this list into groups so that each group is a number mod n   (hence not 

more than 33 digits long). The following Maple command does this nicely: 
 >  

 

Now, we want to apply the encryption function (exponentiation mod n with exponent e) to 

each block of the ciphertext. To do this we first define the function, then use Maple’s map 

command to let the function apply on each component of the input. 
 >  

 

>  
 

This is the ciphertext with each component being a number mod n. Out of curiosity you may 

wonder what text it corresponds to. Let’s find out. This will be done in two steps. First convert 

each number to a sequence of base 256 numbers, then find the corresponding characters. 

 
>  

 

>  
 

As you see, the ciphertext is not anything intelligible. To decrypt it correctly, we need to use 

the decryption key first then apply the previous two commands. 

 
>  
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>  
 

>  

 

It works! 

 

 One-way Functions: A fundamental notion in public key cryptography is that of a one-way 

trapdoor function. A function :f X Y is called a one-way function if ( )f x is easy to 

compute for all ,x X and for all (or most) ,y Y  it is computationally infeasible to find 

x X  such that ( ) .f x y  A one-way function f  is called trapdoor if given some extra 

information it becomes feasible to find  x X  such that ( ) .f x y  Multiplication of large 

integers is believed to be a one-way function (when the number is large and does not contain 

small prime factors), and that assumption is at the heart of the security of the RSA 

cryptosystem. We saw that multiplying two integers is easy, i.e. there exists an efficient 

algorithm to do it, however no efficient algorithm is known for factoring a given (large) integer. 

One can also ask whether it is possible to decrypt messages without having to factor n  in RSA. 

Clearly, it suffices to compute ( )n  to break the system. The authors of RSA claim that 

determining ( )n  is no easier than factoring n  [12]. Yet another question is whether 

computing e-th roots mod n can be done efficiently. If yes, then it would be possible to break 

RSA without having to find ( )n . However,  no efficient algorithms are known to do that 

either (except for some special cases). The RSA function   : n nf  defined by   

( ) modef x x n  is believed to be a trapdoor one-way function.  Given an arbitrary element of 

n , no efficient algorithms are known to find its e-th root in general. With the additional 

information of d however it becomes easy to do so. Whether computing e-th roots mod n is 

equivalent to integer factoring is not known either.  

 

Another problem that is believed to be a one-way function is the discrete logarithm problem.  

There is an encryption scheme called ElGamal that is based on the difficulty of this problem. 

See  [13], [14] more on the discrete log problem and the ElGamal cryptosystem. 

 

Now try factoring some large integers on Maple and Magma to get a sense of how much time it 

may take with numbers of different magnitudes. 

 

Consider the primes p=1991864036785658356909640066309 and 

q=207311008982089108727256416579693. They are indeed primes, as the following 

computation shows. It also shows that it takes practically no time to multiply these two integers, 

but takes more than 44 seconds to factor them on Maple. 
>  

>  

09 
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93 

>  

 

 

 

>  

 

 

 

Now, working with larger numbers we get the following. I had to stop the execution after 

940.01 seconds and 39.68 MB of memory. 
>  

>  

 

 

>  

 

 

 

>  

 

Warning,  computation interrupted 
 

 

The same calculations in Magma (http://magma.maths.usyd.edu.au/calc/) gives the following 

results. The input  

p:=1991864036785658356909640066309; 

q:=207311008982089108727256416579693; 

IsPrime(p); 

IsPrime(q); 

n:=p*q; 

produces the output 

true 

true 
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            Total time: 0.170 seconds, Total memory usage: 9.57MB 

 

Factorization of this integer in Magma however takes more than 20 second, therefore the 

online calculator stops without giving the answer. The Magma command to factor an integer is  

Factorization(n).  On my computer Magma took  137.63 seconds to finish this factorization 

with output: 

> time Factorization(n); 

[ <1991864036785658356909640066309, 1>, <207311008982089108727256416579693, 1> ] 

Time: 137.630 

 

Problem 18: Suppose your enemy is exchanging messages using RSA. You learned that their 

modulus is n =111978231712429478853500054247349 and encryption exponent is  

e =10033995567893. You also obtained the following ciphertext  

[102384236890322070151018468555072,70105509788103331217503087684013] 

Decipher this message. What makes you able to decipher this message so easily?  

 

RSA Signature Scheme 

 

In addition to confidential communication, cryptographic protocols can also be used to sign 

electronic documents. The RSA algorithm can be modified to sign documents. Suppose Bob 

wants to sign a document m. He chooses numbers p,q,n,e, and d exactly as in the RSA 

encryption scheme. Again, (e,n) is made public, p,q, and d are kept private. Bob’s signature on 

m is s = m d mod n. He sends the document along with the signature to Alice. Upon receiving 

the pair (m,s), Alice verifies the signature by computing s e  mod n and checking that it is equal 

to m. 

 

Example: Bob chooses p = 1753, q=1907,  and computes n= p*q=3342971,  

( ) ( 1)( 1) 3339312.n p q      He also chooses e=15073, and finds d=1231777.  So his public 

key is (n,e)=(3342971,15073) and his private key is d=1231777. He wants to withdraw $120 

from an ATM. He signs 120 by s=120 d  = 3023701. The machine computes s e mod n = 120, 

and knows that it is Bob who wants to withdraw $120.  

 

Suppose Eve intercepts the signed message (m,s) and wants to attach Bob’s signature on 

another message y (of her choosing). She cannot use the pair (y,s) as s e y. She needs s 1  such 

that 
1

es = y. However, this is as hard as breaking the RSA system. 

 

Problem 19: Suppose Eve chooses s first and lets the message be m=s e mod .n  Then, it is 

indeed the case that the signature s on m is verified (satisfies the requirement). This is called 

existential forgery. Explain what the problem is with this idea.  

 

Further Remarks on RSA 

 

Besides choosing large enough primes in setting up the RSA system, there are a number of 

issues one needs to pay attention to when implementing the system in the real world.  Although 

the RSA system is widely used and is secure when properly implemented,  it can be vulnerable 

to various attacks if some of the  implementation aspects are not properly addressed.  RSA has 
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been the subject of intensive research and many attacks are devised. One has to be aware of 

existing attacks and pitfalls. There is an excellent survey article on attacks on RSA system [2]. 

Boneh states that “although twenty years of research have led to a number of fascinating 

attacks, none of them is devastating. They mostly illustrate the dangers of improper use of RSA. 

Indeed, securely implementing RSA is a nontrivial task”.  Some of the important points for a 

real world application of RSA are as follows. Messages should be padded with long enough 

random bits before encryption so that multiple encryptions of the same message will give 

different ciphertexts (against chosen-ciphertext attacks).  It is totally unsafe that different users 

use the same RSA modulus. Small decryption exponents should not be used. Low encryption 

exponent is not always safe (not as devastating as low decryption exponent).  There are also 

requirements on the prime factors used. The prime factors used for the RSA modulus should be 

so called strong primes [11]. For more on attacks on RSA and issues to consider for practical 

implementation see [2],[6],[11],[13],[14].  

  

Possible Projects Related to the RSA Cryptosystem 

 

A Cryptographic Scavenger Hunt  

To help students master the RSA cryptosystem and at the same time have them some fun, a 

“scavenger hunt” type of project similar to the one described in [10] can be designed.  Such a 

project needs to be individually designed for each instructor tailored to his or her students and 

campus environment. An award for the winning team makes the project more attractive and 

exciting for the students.   

 

Integer Factoring Algorithms 

Since the difficulty of integer factorization is at the heart of the RSA cryptosystem, students 

can study various integer factorization algorithms and write up a paper describing, 

summarizing and perhaps implementing some of them. Some methods students can study are: 

Pollard’s rho factoring algorithm, p-1 method, random squares, and quadratic sieve. Some 

resources on these algorithms are [4], [11],[13],[14].  

 

Prime Number Generation and Primality Tests 

Generating large primes and verifying that they are indeed primes is another essential problem 

for the RSA system. Students can study various algorithms for these tasks. There are 

deterministic and probabilistic tests for primality. Some topics to consider are:  Trial division, 

Fermat’s test, Carmichael numbers, Miller-Rabin test, random generation of primes, Solovay-

Strassen test. Some resources on these topics are  [4],[6],[11],[13].  

 

Attacks on RSA system 

Studying various attacks on the RSA system would give student a better  understanding of the 

system and important points to pay attention to when implementing the system in practice. 

Some topics to consider in this project would be the size of the encryption exponent, the size of 

the decryption exponent, forward search attack, timing attack, common modulus attack, 

cycling attacks, and unconcealed messages. Some resources are [2],[11],[13],[14]. 

 

Equivalence of Factorization of n to Determining the Decryption Key 

We saw that factorization of the RSA modulus n enables us to determine the private key d. It 

turns out that the converse of this statement is also true: if you can somehow acquire the 
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private key d (in addition to public key (n,e)), then you can factor n efficiently. Your project is 

to find and implement an algorithm to do that. Therefore, the following result is obtained: 

Theorem:    The problem of computing the RSA decryption exponent d from  the public key 

(n,e) and the problem of factoring n are computationally equivalent. 

Show how your method works with the following example: n=176059003, e=357, and 

d=116368493. 

 

Using RSA in the Classroom 

As an immediate application of the RSA system, the students in the classroom decide to 

communicate with each other using the RSA system implemented in Maple. Each student 

generates the necessary information to use the RSA system and submits it to the instructor. The 

instructor keeps the private data and posts the public portion on a web site. Each student must 

send and receive a prescribed number of messages to and from other students in the class. Then, 

everyone decrypts the messages received. Finally, the decrypted messages are verified with the 

sender. 

 

The Best Attacker 

The instructor can design another hands-on activity where the class is divided into attacker 

groups. The instructor posts a number of RSA moduli of various sizes together with public 

keys and an encrypted message for each RSA modulus. The goal of the groups is to decrypt as 

many of these messages as possible within the given time. The group with largest number of 

decrypted messages is the winner. Students should be encouraged to apply attacking strategies 

from the literature. 
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