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Abstract—One of the most important and challenging prob- 4) A large number of best-known codes come from QC

lems in coding theory is to construct codes with the best possible codes. Among these, there is a significant number of
parameters. Quasi-cyclic (QC) and the larger class of quasi- optimal codes

twisted (QT) codes have been proven to contain many good codes
(with best-known parameters). In this paper, we review some AS & result of searches for QC and QT codes, many new

open problems concerning these codes, introduce generalizationsrécord breaking codes (codes with better parameters than
of QT codes, and suggest some constructions involving QT codesthe previously best-known codes), over finite fields of orders
We also present some new and good quaternary codes. 2,3,5,7,8, and 9 have been discovered. Some of the recent work
Keywords: Quaternary codes, quasi-twisted codes, new can be found in [2],[5]-{10], and [14].
bounds. . . . . .
This paper is organized as follows. We first summarize some
|. INTRODUCTION of the basic facts concerning the structure of QT codes (a
more detailed description can be found in [2]), and present
some good and new QT codes ovej. We state a long
Hamming distancel is said to be arin, k, d,-code. _standlng open proble_zm t_hat is connected to QT codes. We then
. . : ' . |ptroduce a generalization of QT codes, called QCT codes,
One of the main problems of coding theory is to find optima -
and a similar open problem for that class. We also look at

values of the parameters k& andd (for a given value of;) and . ) .
to explicitly construct such codes. One version of the probleﬁ?me constructions (variants of known constructions) and open
is to find the maximum value of éivenn and k. This value problems related to QCT codes. New and good codes that we

will be denoted byd,(n, k). There are various bounds onhave found are also presented. By a "new code” we mean a

, code that has parameters better than a previously best-known
the parameters of a linear code (see for example [6]). Up- "~ B "
. ode; and by a “good code” we mean a code that has the same
to-date tables of the best-known linear codes o¥grfor

q=2,3,4,5,7,8 and 9 up to certain lengths and dimensiongarammers as a best-known code.

are available at [3]and [12]. The computer algebra systerf\. The Structure of 1-Generator QT Codes

MAGMA [4] also has such a database. A linear code is called—QT if it is invariant under a
constacyclic shift by positions, where the constacyclic shift of
avector(co, c1, ..., cn1) € Fis (a-ch—1,c0,¢1,- -, Cn2),

The class of quasi-cyclic (QC) and the related class fdr some non-zero element € F,. A linear code that is
quasi-twisted (QT) codes have been shown to be promisingit@ariant under a constacyclic shift is called constacyclic.
solve the problem of determining, (n, k). As a result, much Therefore, constacyclic codes are a special case of QT codes
research has focused on these two classes of codes. Asigeesponding to = 1. (Note the similarity between the
from being a natural generalization of cyclic codes, some afay QC and QT codes are generalizations of cyclic and
the motivations to study these codes are as follows: constacyclic codes, respectively).

1) QC codes meet a modified version of Gilbert Varshamov Algebraically, anl-QT code overF, of lengthn = ml can
bound, unlike many other classes of codes [15]. be viewed as aif [z]/(z"™ — a) submodule of Fy [z]/ (=" —

2) Some best quadratic residue codes and Pless symmetry- Then, anr-generator QT code is spanned bglements
codes are QC [16]. of (F,[x]/(z™ — a))!. In this paper, as is the case in most of

3) They enjoy a rich algebraic structure compared to artihe literature, we restrict ourselves tegenerator QT codes.
trary linear codes (which makes the search process mush important result about 1-generator QT codes that has been
simpler). used in some of the recent work is the following.

Theorem 2.1:[2] Let C be al-generatorl-QT code of

LAfter the submission of this manuscript, it has been announced that théngthn = ml with a generator of the form:
online database is discontinued due to the existence of [12] which has more

explicit information on constructions. g(x) = (fi(x)g(z), fa(x)g(x),..., filx)g(z)) (1)

Let F, (or GF'(g)) denote the finite field witly elements.
A linear code ovel’; of lengthn, dimensionk and minimum

1. QUASI-TWISTED CODES
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where g(x)|(z™ — a),g(z), fi(x) € Fylz]/{(z™ — a), and value ofd,(n, k)).
(fi(z),h(z)) = 1, h(z) = 9”;;)“ for all 1 < i < I. Then i) A [11,6,5] code generated by(z) = a + = + 22 + az® +

I-d < d(C) (minimum distance of”), whered is the minimum az? + 2.
distance of the constacyclic code generated (). Moreover, i) A [13,6,6] code generated by(z) = (z + a)(2® + 2° +

the dimension of” is equal ton — deg(g(z)). az3 + ar + 1)
In terms of generator matrices, the QT codes can i A [13,7,5] code generated by(z) = (2% + z° + az® +
characterized as follows. Let ax + 1)

% G G e Gmea iv) A [19,9,8] code generated by (
Wt G0 G o G g@) = (2" + 28+ bbb + 25 + 2t +ax® + 2+ 1) (2 + a)
Gy = _ . . . (2) V) A [19,10,7) code generated by(x) = (¢ + 2 + baS +
: : : : +at+ar® +ax+1)
vi) A [17,8, 8] code generated by(x) = (z* + bx3 + ba? +

. . . w4 b)(at + 2% +ar® +ar+b)(z+b
An (m x m) matrix of typeGj is called a twistulant matrix vii) A)([17 9,7) code generateZi( (x)): (z* + ba® + ba? +

of or.derm or §imp|y a twistulant matrix. - 2+ b)(* + 25 + az? + az + b)

It is shown in [2] that the generator matrices of QT codes
can be transformed into blocks of twistulant matrices by 8
suitable permutation of columns. It is also shown that the
generator matrix of a 1-generator QT code can be assume
to be in the form

[Gl G2 Gl]

agi agz ags ... 90 mxm

ew Quaternary Cyclic and Related Codes

QNe also discovered the following quaternary cyclic codes
that are new:

i) A [63,35,15] code generated by

] ) ] g = abbb0a001a101a0abba00a0blaabl that dividesz®® — 1.
where eaclGy, is a twistulant matrix of the form (2). ii) A [63,37,14] code generated by

g = a00100bal1abl00a0ablba0llabl

hed f d he field 1 h Using standard construction techniques such as shortening
IWe searche boi ntzavv_QT co ehs ovE[.. The |ef 54 85 and Construction X, we obtained 10 more new codes from
clementst 17@" = a” = a1} wherea is aroot of” 4+ . the two cyclic codes above:

1. Our method is based on Theorem 2.1. We have restricted

our search tol-generator QT codes with generators of the A) By shortening the first code we obtain the following

We start by selecting a polynomiglz) that generates a i) (62,36, 14] iv) [61,35,14] v) [60,34,14] vi) [59,33,14]
constacyclic code with a large minimum distance. The choic ) [58: 32’ 14] viii) [5’7 3’1 14] T Y

of g(x) determines the block lengtih, and the dimension of

the code under consideration. Now choosimgtermines the B) By shortening the second code we obtain the following

length and the dimension, and we can use the table of bourﬁ%%v Laternary codes
[12] to obtain the currently best-known minimum distance, d y

Then we search over th¢;'s to improve the minimum ) 162,34,15]  x) [61,33,15]

mxXn

B. New Codes and Their Generators

ist . | | |
dISEig(lzsple 2.1 C) The following two codes are obtained by applying
Let g(z) = % where h(z) = (28 + az® + 2% + construction X.

3 6 s 3 5 xi) [64,36,15] code:

ar’ + o +a+ 1@ +a° + a2® +2° o tat 1. _obtained by using [1, 1, 1] code, [63, 35, 15] cyclic code
Then g(z) generates a quaternary constacyclic code WI?’fbund above), and [63, 36, 14] cyclic code (from [12])
parameters[39, 12, 18]. According to [12], this is a best- . [66,37,15] ,code: T

known code. Searching over the codes with a genera tained b ; :

. . y using [3, 3, 1] code, [63, 34, 15] cyclic code (from
of the form (g(z),g(x)f1(x)), we find that if we choose [12]), and [63, 37, 14] code (found above)
f1 = 0106000a0bb1 (here we just list the coefficients of the

polynomial f; in increasing powers, thuf is the polynomial
x + bz + ax” + bx® + bzl + 2! — we will use this notation
in the sequel), then we obtain[ag, 12,44]-code. This turns  In this subsection, we present generators of the new
out to be a new code. The weight enumerator of this code &nd good quaternary codes. The weight enumerators were
014457864624921 4108194 51321750 59816075 54 1695096 552737215 53417453 datermined but will not be presented here. These are all
6(32984649241452944 1301391 65491400 g 124371 7 () 21204793159 74 117 1-generator QT codes with a generator of the form described
where the bases are the weights and the exponents areaheve and the constant involved is the field elemeitt Fy.
number of codewords of the given weight. All the computations were performed using the computer
Using this procedure, we discovered the followinglgebra software MAGMA.
constacyclic codes that apptimal (have the largest possible

C. Generators of New and Good QT Codes
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New Quaternary QT Codes search in recent years is intimately related to the following
open problem stated in [16] (18.7, page 587):
i) A [78,12,44] code: This is already given. Open Problem I: Let C be a cyclic (or constacyclic) code

i) A [42,9,23] code generated byg(z), g(x)f1(x)) where, of lengthn. How shoulda(z) be chosen so that the minimum
g(@)h(x) = 2*' —a, h(z) = (z® + ba® +  +a)(2® + az® + distance of the codglu(z)|a(z)u(z)( mod 2" —1)| : u(z) €

az + a)(z® + az® 4+ bx + a), fi = 000aa00al C} is as large as possible? Is there a difference between the
field version and the ring version of this problem?

i) A (172,7,119] code generated by  The practical evidence from searches over 1-generator QC
(9(), g(z) f1(2), 9(2) f2(2), 9(@) f3(2)) where  and QT codes shows that in many cases we do get very large
g(x)(z" + az® + a2’ + 2 + z + a) = 2 —q, minimum distances. However, to the best of our knowledge,

f1 =00101ba, f> = b10b, and f3 = OalaOla no explanation has been provided for any specific properties
) of the polynomials that achieve these large minimum distances
V) A [215, 8, 147] code generated by (one obvious restriction on(z) is that it be relatively prime

(g(fﬂ)ag(x)fl(éﬂ%g(xéfz(x)ég(m)h(m%g(l‘)fzi(l‘)) 43where to the canonical generator). Also, we have not noticed any
9(@)(z" + az® + az® + 2° + x + a)(x + a) = % — a,  explicit connection with good QT codes and this problem.
fi = 00aalOaa, fp = 1a011001, f3 = 0alb001, and This problem can also be expressed in the following alter-

fa = 0011010al native, combinatorial way: Consider a 1-generator QT code
Cr with a generator of the fornig, g f) wherez™ — a = gh
Good Quaterary QT Codes and (f,h) = 1. Sinceg and fg generate the same cyclic

. or constacyclic code”, Cr is obtained fromC' by listing

) A [57,10, 32] code gegneraged . bY the codewords of” in a certain order, then listing them in

(95(“”)’ﬁ(x)flgx)’g(x)b(x)) whereg(z) = (¢ +2° +02° +  gnother order and taking the juxtaposition. Each choice of

2> + 2" +az® +z +1), fr = 1bbablbbab, f> = b1060016b1 f corresponds to an ordering 6. What would be a good
ordering that would preserve the linearity of the code and give

ii) A [172,8,117] code generated by 4 large minimum distance?

(g(l’),g(x)fl(ﬁxLg(ws)fz(ﬂg),g(m)fg(m)) p where
gffxi(ga;ggljglKOZO;S:IJF;L%?;S)():QTOQ&a’ [1l. A GENERALIZATION OF QT CoDES: QCT CoDES

The purpose of this section is to introduce a generalization

i) A [215,7,151] code generated by of QT codes (hence of QC codes as well), called QCT codes
(9(2),9(z) f1(2), g(z) f2(2), () f3(2), g(x) fa(x)) ~ where and investigate their structural properties.
9(x)(27 + az’® + az® +2* + w+a) = 2** —a, fi = a00aaab, Let ai,ay,...,a; be non-zero constants (not necessarily
f2 = 1660001, f3 = bb000b, and f4 = 00a110b. distinct) inF,,. A linear code of lengtm = ml will be called
D. QC Codes oveZ, a QCT code if it is invariant under the following shift:
uaternary codes). have also been studied extenghvay. n (3}, (722 n=isCon st ) =

’ " (@1Cml, A2CmI—1, - -+ s QIC(—1)1415 CLs - - » Clm—1)I+1)

QC and QT codes ovéf, are studied and a number of such
codes whose Gray map images have better parameters ttnremark that if all the constants are equal then we obtain
the corresponding binary linear codes are obtained. The seac®T code, if they are all equal to 1 then we obtain a QC
method used in [3] was similar to that described fgrabove. code. If/ = 1 then we obtain constacyclic and cyclic codes
Note the forZ,, the Lee weight is typically considered ratheas special cases.
than the Hamming weight as with codes over fields. In [1], a As in the case of a QT code, it is easy to see that after a
number of new cyclic, QC, and QZ,-codes are presented,suitable permutation of the coordinate positions, a generator
including codes with Gray map images that are better than thetrix of a QCT code can be put into blocks of twistulant
best-known non-linear codes. Although the Gray map imagesatrices (each block involving a possibly different constant).
of Zs-linear codes are most often non-linear, they are still To jllustrate this construction, we present two examples of
better than arbitrary non-linear codes; for instance they afecT codes which are better than the best-known QC or QT
distance invariant. codes ovetZ,.

In this work, we present twdZs-linear QCT codes, a j) A [6,2,6] code generated by
generalization of QT codes defined in the next section, whose
Gray map images have better parameters than the best-known G = { 1 3]0 1|1 2 ]
QC and QT codes. 1 012

E. Open Problem | This code has minimum Lee weight, = 6, while the best
The fact that a very large number of QC and QT codes of tiigC or QT code had; = 5 [1]. In addition, this code iself-
form described above that have been discovered by compuighogona) and the best-known QT self-orthogonal code only
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hasdy = 4 [11]. cyclic and constacyclic (respectively) codes with parameters
i) An [8,4,6] code generated by [11,6,5]. A code with these parameters is optimal [12]. Now
we consider the QCT code generated(hy, ¢2). In this case,
001 2[0 111 o S : :
200 113 0 1 1 hy = % - and hy = L~ are relatively prime so that
G = 12 001/3 301 [h1, ha] = hiha, hence the dimension is 12. The minimum
012 01/3 3 30 distance of this QCT code is 5 which shows that the lower

bound on the minimum distance is attained. Thus we obtain a

This is in fact aself-dualcode, and the best QCorQT cpde haéuaternary[QZ, 12,5] code. According to [12], there exists a
dr, = 4 [1],]21]. Note that the Gray map image of this COd%uaternary[22, 12,7] code.

is the Nordstrom-Robinson code [16]. Thus this construction Generalizing from this example, we can say more about

provides a new simple description of this code. the dimension and minimum distance of QCT codes in the
In addition to the codes above, many hundreds ofquatern%ﬁ/ecim case when all the constants are distinct; It as,

(both overZ, andF;) QCT codes have been found which haveyen ,m — ¢, and2™ — a, are relatively prime. 1™ — a; =
the same parameters as the best-known codes. gih1 and 2™ — ay = gohy then (hy, hy) = 1 (as well as
A. Algebraic Properties (g91,92) = 1) so that[hq, he] = hihe. Then the QCT code

generated by = (g1, ¢2) has dimensiork; + ko where
1, ko are, respectively, the dimensions of the constacyclic
codes generated by; and g,. We also claim that in this
case the minimum distance is actually equahtm{d;,d>},
where d; is the minimum distance of the constacyclic code
generated byy;. To see this, considefthag = (thag1,0) :
t € Fylz],t # 0,deg(t) < deg(h1)}. Since(g1) = (hag1)
(because(hi, he) = 1), we see that there is a codeword of
weight d; in C. Similarly, one can show that’ contains a
codeword of weightd,. The same argument can be applied
o gj(z) = (9j1(2), gj2(), .. ., gju(x)) to any! whenas, as, ..., a; are all distinct. This shows that
o 95i(x) = fji(2)gi(x) for someg;(z) | 2™ — a;, f;i(*) €  the minimum distance of such a QCT code is not very high.

R; and(fji, hi) = 1 wherez™ — a; = g;(x)hi(). However, there is a way to impose a restriction so that a better
Again, we will focus on the 1-generator case. As a corollalyy ,nd on the minimum distance is obtained.

Now we like to investigate the aI?ebraic structure of QC
codes. Letn; € F, — {0}, R; = <ﬁ$ii>, 1<i<landR =
Ry xRox---xR;. AQCT codeC, after a suitable permutation
of coordinates, can be regarded asFgfic]-module of R. We
say thatC is s-generated if it is generated by elements.
Since each block (of lengtim) of a QCT code is actually a
constacyclic code, we have the following result.

Lemma 3.1:An s-generated QCT Codé€' has generators
of the form{g1(z), g2(z),...,gs(x)} where

we have that a 1-generator QCT code is generated by afrneorem 3.2:Let C be a 1-generator
element of the form QCT code generated by, ie. F,span of
g(x) = (fi(@)g (@), fo@)ga(x), ..., fiz)gu(z)) g(@) = (f1(2)g1 (), fo(2)ga(2), .., fil@)gn () with

the conditions on thef;’s and g;'s as described before.
where fi(z), gi(x) € R; andg;(x) | (™ —a;). Moreover, we | et j, = min{deg(h;) : 1 < i < [}. Then the subcode
can show thay; andg; can be chosen so th@fi(z), hi(z)) = ¢ generated byg(z),zg(z), 22g(z), ..., 2" 'g(z) has
1 where h;(z) = 775+ For two polynomialsf andg we  dimension’ and minimum distance> d; + ds + -+ + d;
denote their greatest common divisor @ g) and their least whered; is the minimum distance of the code;).
common multiple by(f, g]. Example 3.2:
Next we consider bounds on the parameters of a QCT coggt ¢=5m=13,1=3,a1 =1,a5 = 2,a3 =4, g = (a* +
Theorem 3.1:Let C' be a 1-generator QCT code generateg3+4x2+x+1)(x+4), g2 = (et + 423 + 422 + 2 +1) (2 +3),
by an element of the form described above. g3 = (2% + 223 + 222 + 1)(z + 1) where g, | (23 — 1),
1) dim(C) = deg([h1, ha, - .., h]) go | (#13 —2) and g3 | (z'® — 4) over F5. The constacyclic
2) d(C) > min{d; : 1 <14 <[} whered; is the minimum codes(g;), (g2) (g3) all have parameter§3,8,4]. They are
distance of the-th constacyclic block and(C) is the also optimal. The subcode dff1 g1, f292, f393) given in the
minimum distance of”. last theorem has length 39, dimension 8 and minimum distance
Proof: Let h = [hy, ha, ..., k], then clearly,h(z)g(xz) = 0 > 12. However, when we choosg = 27, fo = 27+ 2254+22°
which implies thatdim(C') < deg(h). On the other hand, if and f; = 32° + = + 2 the resulting code is {89, 8,21] code.
f(z)g(z) = 0 then f(z) f;(x)gi(z) =0 in R;, for 1 <i <. This example shows that the actual minimum distance in this
This implies thath;(x) | f(x)fi(x). Since(h;(x), fi(z)) =1, construction may be significantly larger than the lower bound
hi(x) | f(x) for 1 < i < 1. Henceh(x) | f(x). This shows promised by the theorem. This code is not the best known
dim(C) > deg(h) and the assertion on the dimension. Theode however, according to [12] there i$34, 8, 23] code.

statement on the minimum distance is rather obviaus.
Example 3.1: B. Open Problem II

Let g = 4, ay = l,aa = a, andm = 11. Let g1(z) = Open Problem II: Naturally, Open Problem 1 above can be
25 +azt + 23+ 22+ b+ 1| (2 — 1) andga(z) = 2° +  stated for 1-generator QCT codes and their subclass described
az* +az® + 22+ +a | (z'* —a). Theng; and g, generate above.
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IV. |a+z|b+ z|a+ b+ 2| CONSTRUCTION ANDQT CODES or

G G G1 f3G 0

Some well-known coding constructions can be applied to ( 01 flGll ;?Gi }[‘;Gi 4Gy >

QCT codes to obtain new good codes. For example, construc- _ ) ) )

tion X and related constructions have been applied to chaiffere the second row (of matrices) is a cyclic shift of the

QC codes to find a large number of new codes in [13]. first row (of matrices). We can also have as many columns as
We also note that when we consider a QCT cade desired. Again, each matrix is a twistulant matrix. We shall

with a generator of the fornfgs, g») where g;|z™ — a; and call such codes meta-QT codes.glf generates afm, k, d]

a1 # as, Cr is equivalent to taking the direct sum of the twarode then the code obtained with this construction will have

constacyclic codes with generator matricgs, G» resp. and lengthm times the number of vertical blocks and dimension
Gy 0 2k. Again, there is no known simple formula for the minimum

0 Gy /- distance.

One of the well-known constructions for new codes from Searching over such codes, we obtain the following two
existing codes is ther + z|b + x|a + b+ z| construction [16] good quaternary codes:
(18.7.4). If ¢, and Cs are two linear codes with generator) A [44,12,20] code with 4 block columns with= 2°+az*+
matricesG; of rank ki, and G, of rank k, resp. then the az®+ 22+ x +a that dividesz!' —a, fi = 2+ 2% +az + 1
codeC obtained from this construction has generator matrignd fo = bz* + az® + 2? 4+ az + a.
i) A [55,12,27] code with the samgas in i), 5 block columns,

thereforeCr has generator matri

%1 C? gl fi =az* +bx® + 22 +bx +1, fo = bzt +ax® +az?+a and
1 G f3=2% 4+ 2% + az? + ax.
Gy Gy G
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and has dimensior2k; + ko. There is no simple formula
known for the minimum distance. One of the most importan
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the following. REFERENCES
[1] N. Aydin and T. A. Gulliver, “Some good cyclic and quasi-twistéd-
A. Open Problem IlI linear codes,’Ars Comb.(submitted). ‘
Open Problem IIl: Are there other applications of this{2] N.Aydin, I-Sdlap gnd D-dK- Raxlf_-Chaudf&url, “The dstructure of 1-%enerat0r
construction? Are there other constructions like this one which 9uasi-twisted codes and new linear cod@es. Codes Cryptogvol. 24,

. no. 3, pp. 313-326, 2001.
give good codes? [3] N. Aydin and D. Ray-Chaudhuri, “Quasi-cyclic codes oy and some
Inspired by this question, we propose to consider a related new binary codesEEE Trans. Inform. Theortyol. 48, no. 7, pp. 2065

construction where the constituent matrices are twistulant. \f\(? 5\?68963222'3. J. Cannon, and C. Playoust, “The Magma algebra system

consider linear codes with generator matrices of the form I: The user language,). Symbolic Compuytvol. 24, pp. 235-266, 1997.
[5] A. E. Brouwer, Linear code bounds [online server],
Gq 0 fiG: http://www.win.tue.nl/ aeb/voorlincod.html.
[6] A. E. Brouwer, Bounds on the size of a linear code, Handbook
0 Gi1 folGy Of Coding TheoryV. S. Pless and W. C. Huffman Eds, pp. 295-461,
Gy Gy Go Elsevier, New York, 1998.

) ) [7] R. Daskalov, T. A. Gulliver and E. Metodieva, “New good quasi-cyclic
whereG; andGs are generator matrices of constacyclic codes, ternary and quaternary linear codef2EE Trans. Inform. Theoryvol.

say with generator polynomialg; and g, (with possibly 43, no. 5, pp. 1647-1650, 1997.

. . . R. Daskalov, T. A. Gulliver, and E. Metodieva, “New ternary linear
different constants). Her¢, G, denotes the twistulant matrix codes,"IEEE Trans. Inform. Theorwol. 45, no. 5, pp. 1687-1688, 1999.

whose associated polynomial f5¢;. [9] R. Daskalov and P. Hristov, “New quasi-twisted degenerate ternary linear
We did a search over codes of this form and found the codes/’IEEE Trans. Inform. Theoryol. 49, no. 9, pp. 2259-2263, 2003.

. . [10] R. Daskalov and P. Hristov, “New binary one-generator quasi-cyclic
following good quaternary code. £51,12,24]-code with a codes,”IEEE Trans. Inform. Theoryvol. 49, no. 11, pp. 3001-3005,

generator matrix of the above form where the component 2003.
polynomlals are as follows: [11] D. G. Glynn, T. A. GU”iVer, and M. K. Gupta, “On some quaternary
— 13 12 4 poll 9 4 pgt 7 6 1 pgb self-orthogonal codesArs Comb.(to appear).

g1 =x"+ "' T + 27 4+ 02" +ar’ +ax” + 02" +  [12] M. Grassl, Table of bounds on linear codes [online server],

z* + b2? + z + 1 dividing 2'7 — 1; g5 = 2 + 212 + ba!! + http://www.codetables.de.

bzl 4+ prd + az” + 26 + 24 + axd + bx2 + ax + b dividin [13] M. Grassl and G. White, “New codes from chains of quasi-cyclic codes,”
17 * . t 2+ b +d +_ b 3+ * * 9 Proc.IEEE Int. Symposium on Inform. Theogp. 2095-2099, 2005.

' —a; fi = az” +bandf; =bx” +ax +a. [14] T. A. Gulliver and P. R. JOstergird, “New binary linear codesArs.

Comb, vol. 56, pp. 105-112, 2000.
V. META-QT CODES [15] T. Kasami, “A Gilbert-Varshamov bound for quasi-cyclic codes of rate

. . . . . 1/2” IEEE Trans. Inform. Theoryol. 20, pp. 679, 1974.
Finally, we introduce a variant of the previous constructiofie) F. 3. Macwiliams and N. J. A. Sloan&he Theory Of Error Correcting

where generator matrices have the form Codes North Holland, New York, 1977.
[17] I. Siap, N. Aydin, and D. K. Ray-Chaudhuri, “New ternary quasi-cyclic
G1 [1G1 foGy 0 codes with better minimum distance$2EE Trans. Inform. Theorwol.
0 Gy G oGy 46, no. 4, pp. 1554-1558, 2000.

860



