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Abstract— One of the most important and challenging prob-
lems in coding theory is to construct codes with the best possible
parameters. Quasi-cyclic (QC) and the larger class of quasi-
twisted (QT) codes have been proven to contain many good codes
(with best-known parameters). In this paper, we review some
open problems concerning these codes, introduce generalizations
of QT codes, and suggest some constructions involving QT codes.
We also present some new and good quaternary codes.
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I. I NTRODUCTION

Let Fq (or GF (q)) denote the finite field withq elements.
A linear code overFq of lengthn, dimensionk and minimum
Hamming distanced is said to be an[n, k, d]q-code.

One of the main problems of coding theory is to find optimal
values of the parametersn, k andd (for a given value ofq) and
to explicitly construct such codes. One version of the problem
is to find the maximum value ofd, givenn andk. This value
will be denoted bydq(n, k). There are various bounds on
the parameters of a linear code (see for example [6]). Up-
to-date tables of the best-known linear codes overFq for
q = 2, 3, 4, 5, 7, 8 and 9 up to certain lengths and dimensions
are available at [5]1 and [12]. The computer algebra system
MAGMA [4] also has such a database.

II. QUASI-TWISTED CODES

The class of quasi-cyclic (QC) and the related class of
quasi-twisted (QT) codes have been shown to be promising to
solve the problem of determiningdq(n, k). As a result, much
research has focused on these two classes of codes. Aside
from being a natural generalization of cyclic codes, some of
the motivations to study these codes are as follows:

1) QC codes meet a modified version of Gilbert Varshamov
bound, unlike many other classes of codes [15].

2) Some best quadratic residue codes and Pless symmetry
codes are QC [16].

3) They enjoy a rich algebraic structure compared to arbi-
trary linear codes (which makes the search process much
simpler).

1After the submission of this manuscript, it has been announced that this
online database is discontinued due to the existence of [12] which has more
explicit information on constructions.

4) A large number of best-known codes come from QC
codes. Among these, there is a significant number of
optimal codes.

As a result of searches for QC and QT codes, many new
record breaking codes (codes with better parameters than
the previously best-known codes), over finite fields of orders
2,3,5,7,8, and 9 have been discovered. Some of the recent work
can be found in [2],[5]-[10], and [14].

This paper is organized as follows. We first summarize some
of the basic facts concerning the structure of QT codes (a
more detailed description can be found in [2]), and present
some good and new QT codes overF4. We state a long
standing open problem that is connected to QT codes. We then
introduce a generalization of QT codes, called QCT codes,
and a similar open problem for that class. We also look at
some constructions (variants of known constructions) and open
problems related to QCT codes. New and good codes that we
have found are also presented. By a “new code” we mean a
code that has parameters better than a previously best-known
code; and by a “good code” we mean a code that has the same
parameters as a best-known code.

A. The Structure of 1-Generator QT Codes

A linear code is calledl−QT if it is invariant under a
constacyclic shift byl positions, where the constacyclic shift of
a vector(c0, c1, . . . , cn−1) ∈ Fn

q is (a·cn−1, c0, c1, . . . , cn−2),
for some non-zero elementa ∈ Fq. A linear code that is
invariant under a constacyclic shift is called constacyclic.
Therefore, constacyclic codes are a special case of QT codes
corresponding tol = 1. (Note the similarity between the
way QC and QT codes are generalizations of cyclic and
constacyclic codes, respectively).

Algebraically, anl-QT code overFq of lengthn = ml can
be viewed as anFq[x]/〈xm−a〉 submodule of(Fq[x]/〈xm−
a〉)l. Then, anr-generator QT code is spanned byr elements
of (Fq[x]/〈xm − a〉)l. In this paper, as is the case in most of
the literature, we restrict ourselves to1-generator QT codes.
An important result about 1-generator QT codes that has been
used in some of the recent work is the following.

Theorem 2.1:[2] Let C be a 1-generatorl-QT code of
lengthn = ml with a generator of the form:

g(x) = (f1(x)g(x), f2(x)g(x), . . . , fl(x)g(x)) (1)
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where g(x)|(xm − a), g(x), fi(x) ∈ Fq[x]/〈xm − a〉, and
(fi(x), h(x)) = 1, h(x) = xm−a

g(x) for all 1 ≤ i ≤ l. Then
l·d ≤ d(C) (minimum distance ofC), whered is the minimum
distance of the constacyclic code generated byg(x). Moreover,
the dimension ofC is equal ton− deg(g(x)).

In terms of generator matrices, the QT codes can be
characterized as follows. Let

G0 =


g0 g1 g2 . . . gm−1

agm−1 g0 g1 . . . gm−2

...
...

...
...

ag1 ag2 ag3 . . . g0


m×m

(2)

An (m × m) matrix of typeG0 is called a twistulant matrix
of orderm or simply a twistulant matrix.

It is shown in [2] that the generator matrices of QT codes
can be transformed into blocks of twistulant matrices by a
suitable permutation of columns. It is also shown that the
generator matrix of a 1-generator QT code can be assumed
to be in the form[

G1 G2 . . . Gl

]
m×n

where eachGk is a twistulant matrix of the form (2).

B. New Codes and Their Generators

We searched for new QT codes overF4. The fieldF4 has
elements{0, 1, a, b = a2 = a+1} wherea is a root ofx2+x+
1. Our method is based on Theorem 2.1. We have restricted
our search to1-generator QT codes with generators of the
form: (g(x), f1(x)g(x), . . . , fl−1(x)g(x))

We start by selecting a polynomialg(x) that generates a
constacyclic code with a large minimum distance. The choice
of g(x) determines the block lengthm, and the dimension of
the code under consideration. Now choosingl determines the
length and the dimension, and we can use the table of bounds
[12] to obtain the currently best-known minimum distance.
Then we search over thefi’s to improve the minimum
distance.

Example 2.1:
Let g(x) = x39−a

h(x) where h(x) = (x6 + ax5 + x4 +
ax3 + x + a + 1)(x6 + x5 + ax3 + x2 + x + a + 1).
Then g(x) generates a quaternary constacyclic code with
parameters[39, 12, 18]. According to [12], this is a best-
known code. Searching over the codes with a generator
of the form (g(x), g(x)f1(x)), we find that if we choose
f1 = 010b000a0bb1 (here we just list the coefficients of the
polynomialf1 in increasing powers, thusf1 is the polynomial
x + bx3 + ax7 + bx9 + bx10 + x11 – we will use this notation
in the sequel), then we obtain a[78, 12, 44]-code. This turns
out to be a new code. The weight enumerator of this code is:
014467864624921481031945032175052816075541695096562737215583417453

6032984646224145296413013916649140068124371702129472315974117

where the bases are the weights and the exponents are the
number of codewords of the given weight.

Using this procedure, we discovered the following
constacyclic codes that areoptimal (have the largest possible

value ofdq(n, k)).
i) A [11, 6, 5] code generated byg(x) = a + x + x2 + ax3 +
ax4 + x5.
ii) A [13, 6, 6] code generated byg(x) = (x + a)(x6 + x5 +
ax3 + ax + 1)
iii) A [13, 7, 5] code generated byg(x) = (x6 + x5 + ax3 +
ax + 1)
iv) A [19, 9, 8] code generated by
g(x) = (x9 + x8 + bx6 + x5 + x4 + ax3 + x + 1)(x + a)
v) A [19, 10, 7] code generated byg(x) = (x9 + x8 + bx6 +
x5 + x4 + ax3 + x + 1)
vi) A [17, 8, 8] code generated byg(x) = (x4 + bx3 + bx2 +
x + b)(x4 + x3 + ax2 + ax + b)(x + b)
vii) A [17, 9, 7] code generated byg(x) = (x4 + bx3 + bx2 +
x + b)(x4 + x3 + ax2 + ax + b)

New Quaternary Cyclic and Related Codes

We also discovered the following quaternary cyclic codes
that are new:
i) A [63, 35, 15] code generated by
g = abbb0a001a101a0abba00a0b1aab1 that dividesx63 − 1.
ii) A [63, 37, 14] code generated by
g = a00100ba1ab100a0ab1ba011ab1

Using standard construction techniques such as shortening
and Construction X, we obtained 10 more new codes from
the two cyclic codes above:

A) By shortening the first code we obtain the following
new quaternary codes
iii) [62, 36, 14] iv) [61,35,14] v) [60,34,14] vi) [59,33,14]
vii) [58,32,14] viii) [57,31,14]

B) By shortening the second code we obtain the following
new quaternary codes
ix) [62,34,15] x) [61,33,15]

C) The following two codes are obtained by applying
construction X.
xi) [64,36,15] code:
obtained by using [1, 1, 1] code, [63, 35, 15] cyclic code
(found above), and [63, 36, 14] cyclic code (from [12])
xii) [66,37,15] code:
obtained by using [3, 3, 1] code, [63, 34, 15] cyclic code (from
[12]), and [63, 37, 14] code (found above)

C. Generators of New and Good QT Codes

In this subsection, we present generators of the new
and good quaternary codes. The weight enumerators were
determined but will not be presented here. These are all
1-generator QT codes with a generator of the form described
above and the constant involved is the field elementa in F4.
All the computations were performed using the computer
algebra software MAGMA.
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New Quaternary QT Codes

i) A [78, 12, 44] code: This is already given.
ii) A [42, 9, 23] code generated by(g(x), g(x)f1(x)) where,
g(x)h(x) = x21 − a, h(x) = (x3 + bx2 + x + a)(x3 + ax2 +
ax + a)(x3 + ax2 + bx + a), f1 = 000aa00a1

iii) A [172, 7, 119] code generated by
(g(x), g(x)f1(x), g(x)f2(x), g(x)f3(x)) where
g(x)(x7 + ax6 + ax5 + x2 + x + a) = x43 − a,
f1 = 00101ba, f2 = b10b, andf3 = 0a1a01a

iv) A [215, 8, 147] code generated by
(g(x), g(x)f1(x), g(x)f2(x), g(x)f3(x), g(x)f4(x)) where
g(x)(x7 + ax6 + ax5 + x2 + x + a)(x + a) = x43 − a,
f1 = 00aa10aa, f2 = 1a011001, f3 = 0a1b001, and
f4 = 0011010a1

Good Quaternary QT Codes

i) A [57, 10, 32] code generated by
(g(x), g(x)f1(x), g(x)f2(x)) whereg(x) = (x9 + x8 + bx6 +
x5 + x4 + ax3 + x + 1), f1 = 1bbab1bbab, f2 = b10b001bb1

ii) A [172, 8, 117] code generated by
(g(x), g(x)f1(x), g(x)f2(x), g(x)f3(x)) where
g(x)(x7 + ax6 + ax5 + x2 + x + a)(x + a) = x43 − a,
f1 = 0aa1001a, f2 = 00a0b101, andf3 = 0aa10a01

iii) A [215, 7, 151] code generated by
(g(x), g(x)f1(x), g(x)f2(x), g(x)f3(x), g(x)f4(x)) where
g(x)(x7 +ax6 +ax5 +x2 +x+a) = x43−a, f1 = a00aaab,
f2 = 1bb0001, f3 = bb000b, andf4 = 00a110b.

D. QC Codes overZ4

Linear codes over the integers modulo 4,Z4 (also called
quaternary codes), have also been studied extensively. In [3],
QC and QT codes overZ4 are studied and a number of such
codes whose Gray map images have better parameters than
the corresponding binary linear codes are obtained. The search
method used in [3] was similar to that described forF4 above.
Note the forZ4, the Lee weight is typically considered rather
than the Hamming weight as with codes over fields. In [1], a
number of new cyclic, QC, and QTZ4-codes are presented,
including codes with Gray map images that are better than the
best-known non-linear codes. Although the Gray map images
of Z4-linear codes are most often non-linear, they are still
better than arbitrary non-linear codes; for instance they are
distance invariant.

In this work, we present twoZ4-linear QCT codes, a
generalization of QT codes defined in the next section, whose
Gray map images have better parameters than the best-known
QC and QT codes.

E. Open Problem I

The fact that a very large number of QC and QT codes of the
form described above that have been discovered by computer

search in recent years is intimately related to the following
open problem stated in [16] (18.7, page 587):

Open Problem I: Let C be a cyclic (or constacyclic) code
of lengthn. How shoulda(x) be chosen so that the minimum
distance of the code{|u(x)|a(x)u(x)( mod xn−1)| : u(x) ∈
C} is as large as possible? Is there a difference between the
field version and the ring version of this problem?

The practical evidence from searches over 1-generator QC
and QT codes shows that in many cases we do get very large
minimum distances. However, to the best of our knowledge,
no explanation has been provided for any specific properties
of the polynomials that achieve these large minimum distances
(one obvious restriction ona(x) is that it be relatively prime
to the canonical generator). Also, we have not noticed any
explicit connection with good QT codes and this problem.

This problem can also be expressed in the following alter-
native, combinatorial way: Consider a 1-generator QT code
CT with a generator of the form(g, gf) wherexm − a = gh
and (f, h) = 1. Since g and fg generate the same cyclic
or constacyclic codeC, CT is obtained fromC by listing
the codewords ofC in a certain order, then listing them in
another order and taking the juxtaposition. Each choice of
f corresponds to an ordering ofC. What would be a good
ordering that would preserve the linearity of the code and give
a large minimum distance?

III. A G ENERALIZATION OF QT CODES: QCT CODES

The purpose of this section is to introduce a generalization
of QT codes (hence of QC codes as well), called QCT codes
and investigate their structural properties.

Let a1, a2, . . . , al be non-zero constants (not necessarily
distinct) in Fq. A linear code of lengthn = ml will be called
a QCT code if it is invariant under the following shift:

(c1, c2, . . . , c(m−1)l, c(m−1)l+1, . . . , cml) →
(a1cml, a2cml−1, . . . , alc(m−1)l+1, c1, . . . , c(m−1)l+1)

We remark that if all the constants are equal then we obtain
a QT code, if they are all equal to 1 then we obtain a QC
code. If l = 1 then we obtain constacyclic and cyclic codes
as special cases.

As in the case of a QT code, it is easy to see that after a
suitable permutation of the coordinate positions, a generator
matrix of a QCT code can be put into blocks of twistulant
matrices (each block involving a possibly different constant).

To illustrate this construction, we present two examples of
QCT codes which are better than the best-known QC or QT
codes overZ4.
i) A [6,2,6] code generated by

G =
[

1 3 0 1 1 2
1 1 1 0 2 1

]
This code has minimum Lee weightdL = 6, while the best
QC or QT code hasdL = 5 [1]. In addition, this code isself-
orthogonal, and the best-known QT self-orthogonal code only
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hasdL = 4 [11].
ii) An [8,4,6] code generated by

G =


0 0 1 2 0 1 1 1
2 0 0 1 3 0 1 1
1 2 0 0 3 3 0 1
0 1 2 0 3 3 3 0


This is in fact aself-dualcode, and the best QC or QT code has
dL = 4 [1],[11]. Note that the Gray map image of this code
is the Nordstrom-Robinson code [16]. Thus this construction
provides a new simple description of this code.

In addition to the codes above, many hundreds of quaternary
(both overZ4 andF4) QCT codes have been found which have
the same parameters as the best-known codes.

A. Algebraic Properties

Now we like to investigate the algebraic structure of QCT
codes. Letai ∈ Fq − {0}, Ri = Fq [x]

〈xm−ai〉 , 1 ≤ i ≤ l andR =
R1×R2×· · ·×Rl. A QCT codeC, after a suitable permutation
of coordinates, can be regarded as anFq[x]-module ofR. We
say thatC is s-generated if it is generated bys elements.
Since each block (of lengthm) of a QCT code is actually a
constacyclic code, we have the following result.

Lemma 3.1:An s-generated QCT CodeC has generators
of the form{g1(x),g2(x), . . . ,gs(x)} where

• gj(x) = (gj1(x), gj2(x), . . . , gjl(x))
• gji(x) = fji(x)gi(x) for somegi(x) | xm − ai, fji(x) ∈

Ri and (fji, hi) = 1 wherexm − ai = gi(x)hi(x).
Again, we will focus on the 1-generator case. As a corollary

we have that a 1-generator QCT code is generated by an
element of the form

g(x) = (f1(x)g1(x), f2(x)g2(x), . . . , fl(x)gl(x))

wherefi(x), gi(x) ∈ Ri andgi(x) | (xm − ai). Moreover, we
can show thatfi andgi can be chosen so that(fi(x), hi(x)) =
1 wherehi(x) = xm−ai

gi(x) . For two polynomialsf and g we
denote their greatest common divisor by(f, g) and their least
common multiple by[f, g].

Next we consider bounds on the parameters of a QCT code.
Theorem 3.1:Let C be a 1-generator QCT code generated

by an element of the form described above.
1) dim(C) = deg([h1, h2, . . . , hl])
2) d(C) ≥ min{di : 1 ≤ i ≤ l} wheredi is the minimum

distance of thei-th constacyclic block andd(C) is the
minimum distance ofC.

Proof: Let h = [h1, h2, . . . , hl], then clearly,h(x)g(x) = 0
which implies thatdim(C) ≤ deg(h). On the other hand, if
f(x)g(x) = 0 thenf(x)fi(x)gi(x) = 0 in Ri, for 1 ≤ i ≤ l.
This implies thathi(x) | f(x)fi(x). Since(hi(x), fi(x)) = 1,
hi(x) | f(x) for 1 ≤ i ≤ l. Henceh(x) | f(x). This shows
dim(C) ≥ deg(h) and the assertion on the dimension. The
statement on the minimum distance is rather obvious.�

Example 3.1:
Let q = 4, a1 = 1, a2 = a, andm = 11. Let g1(x) =
x5 + ax4 + x3 + x2 + bx + 1 | (x11 − 1) and g2(x) = x5 +
ax4 + ax3 + x2 + x + a | (x11 − a). Theng1 andg2 generate

cyclic and constacyclic (respectively) codes with parameters
[11, 6, 5]. A code with these parameters is optimal [12]. Now
we consider the QCT code generated by〈g1, g2〉. In this case,
h1 = x11−1

g1
and h2 = x11−a

g2
are relatively prime so that

[h1, h2] = h1h2, hence the dimension is 12. The minimum
distance of this QCT code is 5 which shows that the lower
bound on the minimum distance is attained. Thus we obtain a
quaternary[22, 12, 5] code. According to [12], there exists a
quaternary[22, 12, 7] code.

Generalizing from this example, we can say more about
the dimension and minimum distance of QCT codes in the
special case when all the constants are distinct. Ifa1 6= a2,
thenxm − a1 andxm − a2 are relatively prime. Ifxm − a1 =
g1h1 and xm − a2 = g2h2 then (h1, h2) = 1 (as well as
(g1, g2) = 1) so that [h1, h2] = h1h2. Then the QCT code
C generated byg = 〈g1, g2〉 has dimensionk1 + k2 where
k1, k2 are, respectively, the dimensions of the constacyclic
codes generated byg1 and g2. We also claim that in this
case the minimum distance is actually equal tomin{d1, d2},
where di is the minimum distance of the constacyclic code
generated bygi. To see this, consider{th2g = (th2g1, 0) :
t ∈ Fq[x], t 6= 0,deg(t) < deg(h1)}. Since 〈g1〉 = 〈h2g1〉
(because(h1, h2) = 1), we see that there is a codeword of
weight d1 in C. Similarly, one can show thatC contains a
codeword of weightd2. The same argument can be applied
to any l when a1, a2, . . . , al are all distinct. This shows that
the minimum distance of such a QCT code is not very high.
However, there is a way to impose a restriction so that a better
bound on the minimum distance is obtained.

Theorem 3.2:Let C be a 1-generator
QCT code generated by, i.e., Fq-span of
g(x) = (f1(x)g1(x), f2(x)g2(x), . . . , fl(x)gl(x)) with
the conditions on thefi’s and gi’s as described before.
Let h = min{deg(hi) : 1 ≤ i ≤ l}. Then the subcode
C ′ generated byg(x), xg(x), x2g(x), . . . , xh−1g(x) has
dimensionh and minimum distance≥ d1 + d2 + · · · + dl

wheredi is the minimum distance of the code〈gi〉.
Example 3.2:

Let q = 5,m = 13, l = 3, a1 = 1, a2 = 2, a3 = 4, g1 = (x4 +
x3+4x2+x+1)(x+4), g2 = (x4+4x3+4x2+x+1)(x+3),
g3 = (x4 + 2x3 + 2x2 + 1)(x + 1) where g1 | (x13 − 1),
g2 | (x13 − 2) and g3 | (x13 − 4) over F5. The constacyclic
codes〈g1〉, 〈g2〉 〈g3〉 all have parameters[13, 8, 4]. They are
also optimal. The subcode of〈f1g1, f2g2, f3g3〉 given in the
last theorem has length 39, dimension 8 and minimum distance
≥ 12. However, when we choosef1 = x7, f2 = x7+2x6+2x5

andf3 = 3x6 + x + 2 the resulting code is a[39, 8, 21] code.
This example shows that the actual minimum distance in this
construction may be significantly larger than the lower bound
promised by the theorem. This code is not the best known
code however, according to [12] there is a[39, 8, 23] code.

B. Open Problem II

Open Problem II: Naturally, Open Problem 1 above can be
stated for 1-generator QCT codes and their subclass described
above.
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IV. |a + x|b + x|a + b + x| CONSTRUCTION ANDQT CODES

Some well-known coding constructions can be applied to
QCT codes to obtain new good codes. For example, construc-
tion X and related constructions have been applied to chains
QC codes to find a large number of new codes in [13].

We also note that when we consider a QCT codeCT

with a generator of the form(g1, g2) wheregi|xm − ai and
a1 6= a2, CT is equivalent to taking the direct sum of the two
constacyclic codes with generator matricesG1, G2 resp. and

thereforeCT has generator matrix

(
G1 0
0 G2

)
.

One of the well-known constructions for new codes from
existing codes is the|a + x|b + x|a + b + x| construction [16]
(18.7.4). If C1 and C2 are two linear codes with generator
matricesG1 of rank k1, and G2 of rank k2 resp. then the
codeC obtained from this construction has generator matrix G1 0 G1

0 G1 G1

G2 G2 G2


and has dimension2k1 + k2. There is no simple formula
known for the minimum distance. One of the most important
applications of this constructing is the extended binary Golay
code. Another open problem listed in [16] (18.7, page 588) is
the following.

A. Open Problem III

Open Problem III: Are there other applications of this
construction? Are there other constructions like this one which
give good codes?

Inspired by this question, we propose to consider a related
construction where the constituent matrices are twistulant. We
consider linear codes with generator matrices of the form G1 0 f1G1

0 G1 f2G1

G2 G2 G2


whereG1 andG2 are generator matrices of constacyclic codes,
say with generator polynomialsg1 and g2 (with possibly
different constants). Heref1G1 denotes the twistulant matrix
whose associated polynomial isf1g1.

We did a search over codes of this form and found the
following good quaternary code. A[51, 12, 24]-code with a
generator matrix of the above form where the component
polynomials are as follows:

g1 = x13 + x12 + bx11 + x9 + bx8 + ax7 + ax6 + bx5 +
x4 + bx2 + x + 1 dividing x17 − 1; g2 = x13 + x12 + bx11 +
bx10 + bx9 + ax7 + x6 + x4 + ax3 + bx2 + ax + b dividing
x17 − a; f1 = ax2 + b andf2 = bx3 + ax + a.

V. M ETA-QT CODES

Finally, we introduce a variant of the previous construction
where generator matrices have the form(

G1 f1G1 f2G1 0
0 G1 f1G1 f2G1

)

or (
G1 f1G1 f2G1 f3G1 0
0 G1 f1G1 f2G1 f3G1

)
where the second row (of matrices) is a cyclic shift of the
first row (of matrices). We can also have as many columns as
desired. Again, each matrix is a twistulant matrix. We shall
call such codes meta-QT codes. Ifg1 generates an[m, k, d]
code then the code obtained with this construction will have
lengthm times the number of vertical blocks and dimension
2k. Again, there is no known simple formula for the minimum
distance.

Searching over such codes, we obtain the following two
good quaternary codes:
i) A [44,12,20] code with 4 block columns withg = x5+ax4+
ax3 +x2 +x+ a that dividesx11 − a, f1 = x4 +x2 + ax+1
andf2 = bx4 + ax3 + x2 + ax + a.
ii) A [55,12,27] code with the sameg as in i), 5 block columns,
f1 = ax4 + bx3 +x2 + bx+1, f2 = bx4 + ax3 + ax2 + a and
f3 = x5 + x3 + ax2 + ax.
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