Homework on Factorization of $x^n - 1$

- 1. Consider the polynomial $x^{15} 1$ over \mathbb{Z}_2 . What is the smallest extension $GF(2^r)$ of \mathbb{Z}_2 that contains a primitive 15-th root of 1 (hence all the roots of $x^{15} 1$)?
- 2. Construct the field $GF(2^r)$ using a primitive polynomial of degree r over \mathbb{Z}_2 . Use Magma to verify (or generate) that your polynomial is primitive. Call a root of that polynomial a.
- 3. Use Magma to find minimal polynomials of all non-zero elements of $GF(2^r)$ (express all the elements of $GF^*(2^r)$ as powers of a). Recall that if $f(\alpha) = 0$ for a polynomial f over \mathbb{Z}_2 , then $f(\alpha^2) = 0$, $f(\alpha^4) = 0$, ...
- 4. Verify that the product of all minimal polynomials is equal to $x^{15} 1$.
- 5. Compute cyclotomic cosets of 2 mod 15 and exhibit the correspondence between cyclotomic cosets and factors of $x^{15} 1$.
- 6. Show how to construct a BCH code of designed distance 4. Give a generator polynomial of this code and find its dimension. What is its actual minimum distance?