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Abstract. One of the most important problems of coding theory is to construct codes with best possible minimum
distances. Recently, quasi-cyclic (QC) codes have been proven to contain many such codes. In this paper, we
consider quasi-twisted (QT) codes, which are generalizations of QC codes, and their structural properties and
obtain new codes which improve minimum distances of best known linear codes over the finite fields G F(3) and
G F (5). Moreover, we give a BCH-type bound on minimum distance for QT codes and give a sufficient condition
for a QT code to be equivalent to a QC code.
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1. Introduction

The class of quasi-cyclic (QC) codes have been shown to be promising to solve one of the
most important problems in coding theory: to construct codes with the best possible param-
eters. Therefore a larger class of linear codes, called quasi-twisted (QT) codes, deserves
a careful study. We have investigated this class of codes very closely, determined some
of their structural properties, and found a BCH-type bound on minimum distance, in the
special case of 1-generator QT codes. Moreover, we have found sufficient conditions for a
QT code to be equivalent to a QC code. Finally, we made use of these results to develop an
efficient method to search for new linear QT codes over the fields G F(3) and G F(5) and
we have been able to find many such codes.

Following the convention, a linear code C of length n, dimension k, and minimum
distance d over F,; will be denoted by [n, k, d],. The following map is useful in defining
some important classes of codes.

Letn =Im wherel,m e N, a € qu = F, — {0} and

Ha,l : C—->V
Ma1((co,.o.Che)) = (@ Comgy ooy @ CU=1)=1, Cl=ls - -+ Cni—1)

where the subscripts are taken modulo 7.
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Definition 1.1. A linear code C is called /-quasi-twisted (/-QT) if 1, ;(C) = C.

In words, a constacyclic shift of a codeword by / positions is still a codeword, where a
constacyclic shift of a codeword (cy, . .., c,—1) is (ac,—1, o, - - ., Cu—2). Some of the most
important classes of codes can be realized as special cases of QT codes. For example the case
a = 1 gives quasi-cyclic codes, ! = 1 gives constacyclic codes (also known as pseudocyclic
codes),l = 1 and a = 1 yields cyclic codes.

Since a code C is [-QT if and only if it is (/, n)-QT (an immediate generalization of the
corresponding fact for QC codes in [9]), where (I, n) denotes the greatest common divisor
of n and [, we will assume, without loss of generality, that [ | n, so that n = ml for some
integer m. Note that if (/, n) = 1, the code is constacyclic.

Recently, there has been much research on quasi-cyclic codes. Some of the important
facts that have motivated the researchers are the following:

1. Quasi-cyclic codes meet a modified version of Gilbert Varshamov bound unlike many
other classes of codes [21].

2. Some best quadratic residue codes and Pless symmetry codes are quasi-cyclic [24].

3. They enjoy a simpler algebraic structure compared to arbitrary linear codes (which makes
the search process much simpler).

4. A large number of record breaking codes come from quasi-cyclic codes. Among these,
there is a significant number of optimal codes (the best possible minimum distance that
a code can achieve), etc.

5. They are natural generalizations of important class of cyclic codes.

Due to the facts mentioned above and many more, researchers worked on quasi-cyclic
codes and have been able to discover new record breaking codes over finite fields of orders
2,3,5,7, 8, and 9 which were quasi-cyclic. Most of the work can be found in [2, 5, 7-17,
19, 27] and [29]. Aside from [8] and [19], there has not been quite as much search on QT
codes as on QC codes. Since the class of QT codes is larger, it would be no surprise to find
“good” linear codes which are QT. That is part of the reason we search over QT codes.
We first review constacyclic codes in the next section and then obtain structural properties
of QT codes in the following sections. Finally, we present new codes and their generators
together with (Hamming) weight enumerators.

2. Constacyclic Codes and a BCH Bound

Constacyclic codes have algebraic properties similar to cyclic codes [1, 20, 22]. For example
they can also be specified through the roots of their generator polynomials. In studying cyclic
codes the factorization of x"” — 1 was crucial. Now, we are interested in factorizing x" — a
over F,. Before looking at this factorization, we remark that in certain cases constacyclic
codes are equivalent to cyclic codes.

Definition 2.1.  [24] Let Cy and C; be codes of length n over F,. We say that C; and C;
are equivalent if there are n permutations o, 7y ..., m,—; of F; and a permutation o of n
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coordinate positions such that
If (co,...,cn—1) € Cy then o (mo(co), ..., mu1(ch=1)) € Ca.

For linear codes only those 7;’s which are the compositions of a scalar multiplication with
a field automorphism are allowed. The scalar multiple may vary for each coordinate, but
the field automorphism must be the same.

There are some important special cases: when all 7;’s are identity permutations, we
say that C| and C, are permutation equivalent and when each ; is a multiplication by a
non-zero scalar, C; and C, are said to be scalar multiple equivalent [26] or monomially
equivalent [4] pp. 18. (For prime fields such as G F (p) for a prime p, there are no non-trivial
field automorphisms.) Monomially equivalent codes have the same weight enumerator, in
particular they have the same minimum distance [4] pp. 18.

THEOREM 2.1. Let C be a constacyclic code of length n, generated by g(x) | (x" — a)
over F,. The constacyclic code Cys generated by the same polynomial over K := F[5] (the
smallest field containing F, and §), where § is an nth root of a € F,, is equivalent to a
cyclic code of the same length over K.

Proof.  First, we embed the field F,; in K by the inclusion map ¢ : F, < K. The image
t(C) of C need not be an ideal in <X’,,( [f]u) but it is contained in the ideal Cs generated by
g(x)in <X’f[j‘]u). Consider the map ¢ : K[x] —> (x’f[f]”, where ¥ (p(x)) = p(x§), for any

K[x]
=17

p(x) € K[x], p(x) denotes p(x) mod(x" — 1) in Then v is a ring homomorphism

which is surjective because for any p(x) € <fo [_x]l), p(x8~1) belongs to K [x]. Therefore,
%oy | = Iy
Keryr (xn—1) "

Since ¥ (x" —a) = (6x)" —a = a(x" — 1) = 0, x" — a is in the kernel (Ker(y)) of this

homomorphism. But Ker(v) is an ideal, so (x"* —a) C Ker(yr). Hence |%| < |%|.
Also, | <x[,f [f]1> | = <fo [_”a> |. Therefore we obtain the following chain of inequalities.
K[x] K[x] K[x] K[x]
(x”—l)‘ T Kery | T | —a)| | (en — 1)’
which implies that |%ﬁ/}| = |% | Togethelg [:&]/ith (éc[’; ]— a) € Ker(y), we conclude that

Ker(y) = (x" — a). Consequently, the rings a1 are isomorphic. Hence the ideals
of these rings are in one-to-one correspondence given by 1. This means that the equivalence
is given by the permutations 7; («) := §'a, @ € K, of K and o, the identity permutation, in
Definition 2.1 and in fact this is a scalar multiple equivalence. ]

Remark 1. Note that we have the following relations between the quotient rings under
consideration:

F,[x] Kx] . Kx]
—> = .
w—a)  r—a) - 1)

Remark 2. The code C in the last theorem is actually subfield-subcode [24] of Cs, which
is the restriction of Cs to Fy.
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COROLLARY 2.1. When F, contains an nth root § of a, a constacyclic code of length n over
F, is equivalent to a cyclic code of length n over F,.

The following lemma from finite field theory tells us exactly when an element a € F,
has an nth root in F;, (hence a sufficient condition for a constacyclic code to be equivalent
to a cyclic code).

LEMMA 2.1. [25] Let a = o' where « is a primitive element of F,. Then the equation
x" =a has a solution in F; ifand only if (n,q —1) | i, where (n, q — 1) denotes the greatest
common divisor of the integers n and q — 1.

2.1. Factorization of x" — a and a BCH Bound

We review factorization of the polynomial x" — a for the sake of completeness. This can
be found in [20] for example. Let a € F, qx be such that it does not have an nth root in F,.
We also assume that (n, g) = 1 so that the polynomial x" — a does not have multiple roots.
The roots of x" — a are 8, 8¢,8¢%,...,8¢" 2 and §¢"~!' where ¢ is a primitive nth root
of unity and 6" = a. Then ¢ lies in F,» where m = ord,(q), the (multiplicative) order of
g modulo n. Since §" = a, §" = a” = 1, where r is the order of a in the multiplicative
group F* which is equal to %, a = o and « is a primitive element of F,. Hence &
is an nrth root of 1. Therefore, § € F,;s where s = ord,,(q). Now, ¢° — 1 = 0 mod nr so
q* — 1 = 0 mod n. This implies that m | s. Consequently, F;,» € F,s. Hence, the field F;
contains both ¢ and § and we may take § = w' and { = w'’ where w is a primitive element
of Fys (therefore a primitive (g* — 1)-st root of unity) and g* — 1 = ntr, for some integer
t.So ¢ = 4", and x" — a factors as follows:

n—1 n—1 n—1
xn —a= H(x _ 6;[) — H (x _ Wt(1+ir)) — H(x _ 81+[r).
i=0 i=0 i=0
Each irreducible factor of x” — a corresponds to a cyclotomic coset modulo nr (not nec-
essarily modulo n) i.e., the degree of each irreducible factor is the same as size of a cyclo-
tomic coset modulo nr. Since all the roots of x” — a are nrth roots of unity, we have
@x" —a)| (x" —1),and (x" — 1) | (x"@~D — 1) | (x¢ " = 1).

EXAMPLE 1. Letq = 5 andn = 6 and let us consider the polynomial x° — 3 over Fs (hence
constacyclic codes of length 6 over Fs with a = 3). A primitive element of Fs is 2, 3 = 23
in Fs, order of 3 in Fs is 4 and (n,q — 1) = (6,4) = 2 [ 3 so that there is no 6th root of 3
in Fs. According to the discussion above,

5
x—-3= H(x — 8 = (243 + )P+ 2x +3)(x2 +3)
i=0
where & is a primitive 6 - 4 = 24th root of unity. The powers of § that appear in this
factorization are 1,5,9, 13, 17, and 21, and these are precisely union of three (the same
as the number of irreducible factors over Fs) cyclotomic cosets modulo 24: cl; = {1, 5},
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cly = {9, 21}, and cly3 = {13, 17}. On the other hand, x** — 1 and x® — 1 factor over Fs
as follows:

1=+ + )P+ 2x £33 A+ D+ x +2)
2+ DR+ x+ D7+ 4+ )2 +3x +H 2 +2)
x+3)x+4)x+2)(x+1), and

1=+ + D+ x4+ Dx + D(x +4).

The factors of x® — 1 correspond to the following cyclotomic cosets modulo 24:
clp = {0}, cly = {4,20}, clg = {8, 16}, and cljp = {12},
which are obtained by shifting the cosets corresponding to x° — 3 by 1.
Now, using Theorem 2.1 we give an alternative proof of the well-known BCH bound.

THEOREM 2.2 [22](BCH Bound for Constacyclic Codes). Let C be a constacyclic code of
length n over F, and let the generator polynomial g(x) have the elements {8¢' : 1 < i <
d — 1}, where ¢ is a primitive nth root of unity and & is an nth root of a, among its roots.
Then the minimum distance of C > d.

Proof. (We assume the setting and the notations of Theorem 2.1) {8¢, 8¢2, ..., 8¢9} =
{87+, 821 . 8@=Dr+11 Consider the constacyclic code Cs of length n over K with gen-
erator polynomial g(x) | (x" —a) having these elements among its roots. The corresponding
cyclic code ¥ (Cs) (over K) generated by g(5x) | (x" — 1) has the elements ¢, IS
among its roots. By the classical BCH bound, the minimum distance of ¥ (Cs) > d. Since
Cs and ¢ (C;) are equivalent, d(Cs) > d as well. Finally, C is a subfield-subcode of Cj,
and therefore has also minimum distance > d. [ |

As the following example shows, the BCH bound is sometimes very useful and sharp.

EXAMPLE 2. We assume the notation of Theorem 2.1. Let ¢ = 3 and n = 28 and consider
constacyclic codes of length 28 over Fs with a = 2. We remark that the condition (n,
q — 1) fi implies that it suffices to consider only even lengths over F3 (to possibly obtain
constacyclic codes not equivalent to cyclic ones). We find that r = 2 and therefore (x*® —
2) | (x> — 1). The factorization of x*® — 2 over Fj is as follows:

27 27
XZS_ZZH()C_(SCi) ZH(X_82i+1)
i=0 i=0

= (x6—|—2x4 + 3 +x2—|—2)(x6+2x5 + 2x —|—2)(x2+x +2)
X+ X+ x+2)0 2 + 243 + X2+ 2)(xP + 2x +2)
where 8 is a primitive 56th root of 1 and ¢ = 8% is a primitive 28th root of I over Fj.

The exponents of § in this factorization are exactly odd integers modulo 56 and they are
partitioned into the following cyclotomic cosets:

{1,3,9,19,25,27}, {5,13,15,23,39,45}, {7,21}, {l1,17,33,41,43,51},
(35,49}, and {29,31,37,47,53,55).
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Let g(x) be the polynomial of smallest degree which contains §',i = 5,11,29, and 35
among its roots. Then
g(x) = x4+ 201 4 x17 4 2x10 4 213 4 2012 201 4 10 4 X% 4 248
+x’ 2t 2 x4+ 1
and the elements 8¢, 14 < i < 27 are among the zeros of g(x). Therefore, by the BCH
bound for constacyclic codes, the constacyclic code of length 28 generated by g(x) has

minimum distance at least 15 (and its dimension is 8). It turns out that these are the
parameters of an optimal linear code over F3 of length 28 and dimension 8 [3].

3. Structure of 1-Generator QT Codes

Let
80 81 8 - 8m-1
agm—1 8o 81 -+ 8m-2
Go= |948m—2 a8m-1 80 .- 8m-3 . (1)
agi ags ags ... 80

mxm

An (m x m) matrix of the type Gy is called a twistulant matrix of order m or simply a
twistulant matrix.

It is shown in [29] that the generator matrices of QC codes can be transformed into blocks
of circulant (twistulant with ¢ = 1) matrices by suitable permutation of columns. We can
adopt a similar proof for QT codes here: Let C be QT code over F;. Let ¢, ¢, ..., ¢, be
the rows of the generator matrix of C. Form another generator matrix for C by taking all
possible w1, ;(c;) (I quasi-twisted shifts). Thus we form an rm x n generator matrix for C.
Next permute the columns Ci, C», ..., C, of the generator matrix so that they appear in
the order

Ci,Cit1s oo, Con—1y141, C2, Cos o .., Ciom—tyi42, - -+, C1, Copy oo, Gy

Then, the resulting matrix will be in the blocks of twistulant matrices. Therefore, generator
matrices of an r-generator and 1-generator QT codes can be assumed to be in the following
forms:

Gy G ... Gy
Gy Gy ... Gy

. . . s and [Gl GZ .o Gl ]mxna
Grl Gr2 Grl

rmxn

respectively, where each G;; (or Gy) is a twistulant matrix of the form (1).

Similar to quasi-cyclic case, an [-QT code over F, of length n = ml can be viewed
as an F,[x]/(x™ — a) submodule of (F,[x]/{(x" — a))!. Then an r-generator QT code
is spanned by r elements of (F,[x]/{x" — a))'. In this paper we restrict ourselves to
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1-generator QT codes. 1-Generator QC codes and their structural properties have been
studied in [27] and [6], respectively. Recently, in [23] the structure of 7-generator QC codes
has been investigated by use of Grobner basis.

Let 1 <i <. For fixed i consider the following ith projection map on an [-QT code C
of length n = ml:

R nl m
IT; : Fq — Fq
(Co, C1, ---,C(mz—l)) - (C(i—l)m» CA+(Gi—Dm)s ++ +» C<m—1+(i—1)m))~

In view of the structure of QT codes described above, IT;(C) is a constacyclic code for all i.
This will yield the following theorem.

THEOREM 3.1. Let C be a 1-generator I-QT code over F, of length n = ml. Then, a
generator g(x) € (Fy[x]/{(x™ — a))! of C has the following form

g() = (f1i(0)g1(x), f2(x)g2(x), ..., fi(x)g1(x)),
where
)| (x" —a) and (fi(x), x" —a)/gi(x)) =1 foralll <i=<I
Proof.  Since I1;(C) is a constacyclic code for every i we have the result. ]
The following is the main theorem which plays an important role in our research.

THEOREM 3.2. Let C be a 1-generator [-QT code of length n = ml with a generator of the
form:

gx) = (fix)gx), L(x)gx), ..., filx)gx)) (2)
where g(x) | (x™ —a), g(x), fi(x) € Fy[x]/(x"™ —a), and (fi(x),h(x)) =1, h(x) = "gm(;)“

foralll <i <1.Thenl-(d+1) < d(C), where {§¢" : s <i < s+ (d —1)} are among the
zeros of g(x) for some integers s, d (d > 0) and dimension of C is equal to n — deg(g(x)).

Proof.  Observe that I1; (C) is a constacyclic code generated by f; (x)g(x) forall 1 <i <.
We have that one of the components becomes zero if and only if all the others do because
p(x) fi(x)g(x) = 0 if and only if A(x) | (p(x) f;(x)) (if p(x) # 0), which implies that
h(x) | p(x) since (fi(x), h(x)) = 1. So, p(x) fj(x)g(x) = 0 for all j. Therefore if ¢ is
a nonzero codeword in C, then IT;(¢) £ O for all i. Since {f;(x)g(x)) = (g(x)), I1;(C)
is a constacyclic code with generator polynomial g(x), and every nonzero codeword has
weight >d (by BCH bound). Hence, a nonzero codeword in C has a weight larger than
or equal to [ - (d + 1). Moreover, it can be shown, similar to the cyclic code case, that
elements g(x), xg(x), ..., x"~4e@®=Dg(x) form a basis for the code. In fact, if a relation
E?igog O gixig(x) = 0 with a; € F, exists (with m-dimensional vectors), then a similar
relation Y%~ a;x'g(x) = 0 holds in F'. Also, if 3, bx'g(x) # 0, then neither is
> bix'g(x) =0. ]

THEOREM 3.3. Leta = o where « is a primitive element of Fy. If (m,q — 1) | i, a QT code
of length n = ml over F, is equivalent to a QC code of length n over F,.
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Proof. Let C be such a QT code with a generator matrix G of the form described in the
beginning of the section. Then to each vertical block j, 1 < j <, of m columns of G apply
the permutations 7; 1 < i < m in the proof of the Theorem 2.1. Then the resulting code is
equivalent to a QC code. [ ]

We end this section with the remark that the results of [23] about 1-generator QC are
special cases of the results in this section.

4. New Codes and Their Generator Matrices
4.1. The Search Method

Our method is based on the Theorem 3.2. We have restricted our search to 1-generator QT
codes with generators of the form:

(g(x), f2(-x)g(x)v s fl(x)g(-x))

In order to refine the search we looked at cyclotomic cosets of appropriate modulus and
formed generator polynomials having longest possible strings of consecutive integer powers
of ¢ among its zeros. After fixing g(x) (hence determining the dimension of the code as well
as the block length m), we searched over f;(x) (by the help of a computer). In most cases
I =2 or 3. When ! = 2, we only search for one f(x) with deg(f(x)) < m — deg(g(x).In
this case the search is exhaustive over the QT codes with the prescribed block length m and
dimension, if the dimension is not too large. For an illustration of the method, we work the
following example in detail.

EXAMPLE 3. Let g = 3, m = 40 and a = 2 and consider constacyclic codes of length 40
over F3. The order of 2 mod 3 is 2 and x*° — 2 factors over F as
39
P H(x _ 52y,
i=0
The exponents of § (a primitive 80th root of 1) are odd integers mod 80 which are partitioned
into the following cyclotomic cosets mod 80:

{1,3,9,27}, {5,15,45,55}, {7,21,29,63}, {11,19,33,57},
{13,31,37,39}, {17,51,59,73}, {23,47,61,69}, {25,35,65,75},
{41,43,49,69}, and {53,71,77,79}.
Let h(x) be the polynomial corresponding to cyclotomic cosets containing 1, 7 and 25 and
let

)C40

-2
h( ) :X28+2X27+2X25 +x24+2x23+x21+2x20+x19+x18
X

427 B BT 2 X2 42,

glx) =

Then g(x) has degree 28 and contains 8¢', 18 < i < 30 among its roots. Therefore,
the constacyclic code of length 40 generated by g(x) has dimension 12 and minimum
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distance >14 and a QT code of the form (g, gfi1, gf2) with (f;, x“;*z) =1,i = 1,2 has
length 120, dimension 12 and minimum distance at least 42. Let fi = 2x'0 4+ x° + x% +
X0+ 2x* + 3+ 2x2 4+ x+ 1, and = x4 2510 4 %% 4 x0 4 x2 + 2x (these are two such
polynomials). A computer search showed that the QT code with these generators has, in
fact, minimum distance 66, 3 units larger than the previously best known linear code over
F5 with parameters [120,12,63].

The weight enumerator of this code is as follows:

01 66448069 140007236080757500878 1 141608 1 1 19040849416087498409019552 934480965609980.

4.2. Generators and Weight Enumerators

We conclude by giving the generator matrices and weight enumerators of the new codes.
Since a generator matrix of a 1-generator QT code is determined by the first row alone (and
the constant a), we only present the first row separating the blocks with a comma.

The first 15 codes in the following list are ternary QT with a = 2 except code number
14 which is QC with @ = 1. The last 3 codes are QT over G F(5) with a = 4.

1. A [120, 12, 66]5 code:
(2011022210020112021121021202100000000000,

2221120102120202010112101120011220200220,
0122010011220100122002101122022001121211).

The weight enumerator is given in the last example.
2. A [160, 12, 90]3 code:

(2011022210020112021121021202100000000000,
0020110211122211021101120010101002010010,
0201121012012222202012020222001121010120,
1212221011020012120001122220021122122022).

The weight enumerator of this code is

Ol 9034729380809622 1 609946400 1 0273440 105 102320 108 107280
11 184080 1 1449040 1 1724720 1207408 1232160 126800 12980.

3. A[164, 8, 102]3 code:

(100112121211002110220122101222111122202122121121101122012
0122002111111120010000000, 00001110210121200010102011121102
22021201222120102020001111011021200001122220212112).

The weight enumerator of this code is

Ol 10213]2105131210865611113121 141312120328123328.
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4. A [164, 10, 96]53 code:

(102121212120101102201111021012021210101111011011021210210
2101022222222201000000000, 00002002120212102101110110101021
22001102222002112221211222112102211210022221002221).

The weight enumerator of this code is

Ol 96]476993444 1026068 1057544 10810496 111 10988 1 1410496 1 174428
1 203608 1 23500'

5. A [56, 12, 27]5 code:
(122210010200112110000000000, 00000010102111112122012021011).
The weight enumerator of this code is
01 2731363()2352033790723 51675523 162960 47 78064 4 516016 4 10085, 112
6. A [56, 16, 21];3 code:
(1011100022122010121122000101, 1121021102221000000000000000).

The weight enumerator of this code is
0121400995609319607 47056 513328 632592 97100408 8 153056 5.9 290864
377135523 8708003 13666243 327441123 426905763 533811923 £5419288
374274312 34269440 395416208 473342080 4 | 2616344 4 92571432 4 31216544

4471l8l64552292846l84()1647815364841608499]4450201651504521685456.
7. A [68, 16, 30]5 code:

(0000000010201112212211010121012112,
1111211120221222121000000000000000).

The weight enumerator of this code is
0130952033 1116563 805664 303511248 478934996 4 513109040 4 10726932
514697304 541035572 57100640 ¢ (140126 3136

8. A[182, 12, 105]; code:

(01111010120210121222022120101102101000222022100111
12012021201121100001011001011111202100102, 11002111
11110001010021202021011200102012200202221212201212
021010121001222012102100000000000).

The weight enumerator of this code is

Ol 1053276 108200201 1 1229321 1442588 1 1778624 120101556
1231 11384 1 2658968 12952416 1 3219656 1 3520020'
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9. A [182, 14, 99]5 code:

(01020221122200100112012211100012022202120210212221
11212120020221220221022201212210110200211, 10122110
00200222011212002021221202022222212022120211212101
111011022112010220100000000000000).

The weight enumerator of this code is

01 993984 10213842 10548174 108121746 11 1279462 1 14504714
1 17766464 120893830 123842354 1266478 10 129384764

13218460413567246138194781413812]4462614758.
10. A [82, 17, 36]; code:

(11200111002202200111002110000000000000000,
01010010121021211001012012210001100111211).

The weight enumerator of this code is
(1361640375084 398528321648 445346 4 91186 4 179088 4 3327344
44574902 4 5987526 4, 1574892 4 72453522 4 3547156 4, 94916802
564894805 | 8123330579741436 5311004892 5 4 11797750 5512005866
5611598244 5710584888 5 99134882 5 7423706 (15705806 ¢ 1 4079664

62276528663 1774562641055668655749846629708667 1434186865436
69255847093487 1 31 167265673410 )
11. A [70, 17, 29]5 code:

(10202000021121112210000000000000000,
00000001121002222001021020021000021).

The weight enumerator of this code is
0!2926603()336033955033450103 53929823 c3848603 82465680
302029790 4 19225160 476328340 4420211310 4 511746910 4726081230
48 1245272050187831005 173637905373175205423 1 86805614404]0
577348740 5130200524220 36406 3300

12. A [148, 18, 71]5 code:

(10022221021211002112111010211120101112112001121201
222200100000000000000000, 0000100220212102021212121
0121011100001122010022200022021112110100120012111).

The weight enumerator of this code is

Ol 7 17407274073 1 6287434047575487617464773 1 37678562407994276
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80154068 8 12854928243586083714988841 10896485 1690752862427052
873522548 8848052648965497409085262809 1 ]088140492 13466668
931626238894189633889521626648962373905297256420369826680552
9926948432 10026400832 101 24953688 10223124408 10320656952 10417888612
105 14970200 10612037876 1079520248 1087219440 1095332588 1 103767932

11 12562028 1 121716948] 1 31092684] 14658748 1 15395604] ]6231028

1177119436 1 1 867192 934336 | (14208 1 9 6068 | 92516 | 93888 | 94592 | p 5444
13. A [52, 13, 23]5 (quasi-cyclic with a = 1) code:
(01110010121122020010120000, 00101001122021010121122000).

The weight enumerator of this code is
Ol 23 16122416902616538 2716900299297630701 223226743633 1 6198035372008
3617708638240318398502041651044217446446734451 19647156'

14. A [52, 10, 26]5 code:
(1021000000000, 0000112100211, 1001211212020, 0102211111220).

The weight enumerator of this code is

Ol 267562765029358830286032920433559035 143523668383 89048
3929904 1 202842728443904526 .

15. A [84, 9, 54]5 code:

(103124242130100000000, 000000014331232342214,
103102220320240142411, 000424123404310023013).

The weight enumerator of this code is

Ol 54134455 193256421257714058 1234859 190686032004
61 535086275 1 8063969()064 1 3003265 16380066]96728 672 16972

682095805 (20143277 1684687 | 137760961807 3645127434188
751713677308773528 9126074209 (1845 1848416
16. A [78, 10, 48]5 code:

(133444201330103020123011314301000000000,
000002223404214004211210142102101021034).

The weight enumerator of this code is
01481248492496 5()39005 1 9672 5721384 5338844 5 481588 5 5121992
56224016 57336336 5,g486408 59679380 1800020 ¢ | 982488 ¢ 1084668
631114308 5 41042080 5 5821496 ¢ 0734604 67510900 £ 6322296 0 185328
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70936007 141964721591273608474202875416761567812_

17. A [42, 12, 21]5 code:

(113044031100000000000, 000013201310322331131).

The weight enumerator of this code is
Ol 21 291222 1 1256233284424107072253087842680102427 1916068
840969325 9785912431 137271963 1 21197148 3729084328 3335393344 3 437446276

35341 15088 36266156243717248056389098880393731028401 109556412152924222792

Remark. Using the extension theorem in [18] we can extend the codes 11, 13 and 14 to
[71, 17, 3013, [53, 13, 24]5 and [53, 10, 27]3 codes respectively.
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