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This chapter gives an introduction to algebraic coding theory and a survey of
constructions of some of the well known classes of algebraic block codes such as
cyclic codes, BCH codes, Reed-Solomon codes, Hamming codes, quadratic residue
codes, and quasi-cyclic (QC) codes. It then describes some recent generalizations
of QC codes and open problems related to them. Also discussed in this chapter
are elementary bounds on the parameters of a linear code, the main problem
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Z4, integers modulo 4, due to increased attention given to these codes recently.
Moreover, a recently created database of best known codes over Z4 is introduced.
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1.1. Introduction and Basic Definitions

Coding theory is concerned with reliability of communication over noisy channels.

Error correcting codes are used in a wide range of communication systems from deep

space communication, to quality of sound in compact disks and wireless phones.

The basic principle of coding theory is to employ redundancy to recover original

messages even if errors occur during the transmission. Redundancy is naturally

used in human languages. It is built into natural languages in many ways.67 One of

the ways the redundancy is manifest in human languages is the fact that not every

possible string of symbols is a valid word in a language. Humans as well as comput-

ers can use this fact to detect and even correct the errors in communication. For

example, suppose you see the word “mistaky” in a text. An error can be detected

and corrected even in the absence of surrounding context using the maximum like-

1
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lihood principle: Among the valid words in the language, “mistake” is the closest

one to the received string.

Using the same basic principles, we can formulate the basic notions of coding

theory in a mathematical way.

Definition 1.1. A code C of length n over an alphabet F is a subset of Fn =

{(a1, a2, . . . , an) : ai ∈ F, 1 ≤ i ≤ n}.

Notice the analogy with the set of valid words in a language. Codewords in Fn

can be likened to valid words in the language. Not every possible string of symbols

is a valid word in a language, likewise not every vector in Fn is a codeword (except

for the trivial and quite useless code of C = Fn). Throughout this chapter, vectors

will be represented by bold face letters such as u ∈ Fn.

The alphabet F of a code is a finite set, the most important case being a finite

field. In this case, we often consider subsets of Fn that are vector subspaces. Such

codes are called linear codes.

Example 1.1. Let C1 = {u1 = 1200, u2 = 0102} and C2 = {v1 = 00000, v2 =

10110, v3 = 11001, v4 = 01111}. Then C1 is a ternary code of length 4 and C2 is

a binary code of length 5. It can easily be verified that C1 is not a linear code,

whereas C2 is. The dimension of C2 is 2. These two specific codes will be referred

to a few times in this section.

A fundamental concept in coding theory is distance.

Definition 1.2. For two vectors u = (u1, u2, . . . , un),v = (v1, v2, . . . , vn) in Fn the

Hamming distance between them is denoted and defined by d(u,v) = |{i : ui 6= vi}|,
the number of positions in which u and v differ. (For a set A, |A| denotes the

number of elements in A). For a code C, we define the minimum distance of C to

be min{d(u,v) : u,v ∈ C,u 6= v}.

Example 1.2. For the codes C1 and C2 defined above, we have d(u1, u2) = 3 and

d(v1, v2) = 4. The minimum distance of both C1 and C2 is 3.

Exercise 1.1.1. Show that the Hamming distance defines a metric on Fn, i.e., for all

u,v,w ∈ Fn it satisfies the following properties: i) d(u,v) ≥ 0, ii) d(u,v) = 0 ⇔
u = v, iii) d(u,v) = d(v,u), iv) d(u,v) ≤ d(u,w) + d(w,v).
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The minimum distance of a code determines its error-detecting and correcting

capabilities. We like to have codes with large minimum distances so that few changes

will not turn a codeword into another. At the same time, we want a code to contain

as many codewords as possible so that we can transmit many different messages.

Not surprisingly, these are two conflicting goals. There are trade offs between the

two objectives. This is one of the main problems in coding theory. We will address

this question more carefully later in this chapter.

Definition 1.3. We say that a code C is e-error detecting, if v ∈ Fn is such that

d(v,u) ≤ e for some u ∈ C then either v = u or v 6∈ C.

Intuitively, this means that a set of at most e changes on a codeword does not

produce another codeword. In the example above, the single change in the word

“mistake” did not lead to another valid word. Is this true for every word in English

language, i.e., is the English language single error detecting? For the codes C1 or

C2, if you take any codeword and if you introduce two errors (i.e., if you change

two coordinates) you do not end up with another codeword.

Definition 1.4. We say that a code C is e-error correcting, if for all v ∈ Fn such

that d(v,u1) ≤ e and d(v,u2) ≤ e for some u1,u2 ∈ C we have u1 = u2.

This means that a vector in Fn cannot be within a Hamming distance e of more

than one codeword. Try to verify that both C1 and C2 are 1-error correcting codes

by taking arbitrary vectors (of appropriate length over the relevant alphabet) and

checking this property.

Now we can state the precise relationship between the minimum distance of a

code and its error detecting and correcting capability.

Theorem 1.1. Let C be a code with minimum distance d. Then C is a t = d − 1

error-detecting code and e = bd−1
2 c error correcting code, where bxc denotes the

greatest integer ≤ x.

Exercise 1.1.2. Prove this theorem using the properties of the Hamming distance.

Determining the minimum distance of a code is an important and in general a

difficult problem in coding theory. For a code of size M , there are
(
M
2

)
= M(M−1)

2 =

O(M2) distinct pairs to consider to find the minimum distance. For linear codes,

we get an improvement. We first need to introduce the concept of Hamming weight.
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Definition 1.5. For a vector u ∈ Fn, the Hamming weight wH(u) of u is defined

to be |{i : ui 6= 0}|, the number of non-zero components of u. For a code C ⊆ Fn,

the minimum Hamming weight of C is min{wH(u) : u ∈ C,u 6= 0}.

For the code C1 both codewords have weight 2, for C2 the weights are 0,3,3,4.

Note that the Hamming distance and the Hamming weight are related by d(u,v) =

wH(u − v) if the alphabet is an additive group. For linear codes, the minimum

distance is the same as the minimum weight.

Lemma 1.1. Let C be a linear code. Then the minimum distance of C is equal to

the minimum weight of C.

Exercise 1.1.3. Show that the minimum distance of C2 is the same as the minimum

weight of C2, but that is not the case for C1. Then, prove this lemma.

Therefore, to compute the minimum distance of a linear code of size M , in the worst

case one needs to consider M − 1 = O(M) vectors, instead of O(M2) vectors.

We also note that the dimension of a linear code determines its size.

Exercise 1.1.4. Let C be a linear code of dimension k over a finite field of order q.

Show that |C| = qk.

For a linear code, the most important parameters are the length, the dimension

and the minimum distance. If a linear code C over Fq, the finite field with q

elements, has the values n, k and d for the length, the dimension and the minimum

distance respectively, it is referred to as an [n, k, d]q-code. In the case of a non-linear

code, we use the notation (n,M, d)q where M is the size of the code. So, we say

that C1 is a (4, 2, 3)3-code and C2 is a [5, 2, 3]2-code.

Let C be an [n, k, d]q linear code. Since C is a vector subspace of Fn
q , every basis

of C has k elements. A k
′ × n, (k

′ ≥ k), matrix G whose row space is equal to

C is called a generator matrix for C. A generator matrix of the form G = (Ik|A),

where Ik denotes the k × k identity matrix, is said to be in the standard form. For

the code C2 a generator matrix is G2 =
(

1 0 1 1 0
1 1 0 0 1

)
. After some elementary row

operations it can be put into the standard form: G2 =
(

1 0 1 1 0
0 1 1 1 1

)
.

The inner product of two codewords u and v in V := Fn
q is defined in the usual
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way

〈u,v〉 :=
n∑

i=1

viui.

The dual or orthogonal code C⊥ of an [n, k]q linear code C is defined by

C⊥ := {v ∈ V : 〈u,v〉 = 0 for all u ∈ C}.

It is easily verified that C⊥ is a vector space of V of dimension n − k, i.e., an

[n, n − k]q code. Let C be an [n, k, d]q code and let G = (Ik|A) be a generator

matrix of C. Let H = (−AT |In−k), where superscript T stands for the transpose,

then

GHT = (Ik|A)
(
−A
In−k

)
= −A+A = 0.

Thus, the rows of H are orthogonal to the rows of G, and since rank(H) = n−k,
H is a generator matrix for C⊥. The matrix H is a parity check matrix for C. More

generally, a parity check matrix for a linear code C is a matrix whose row space is

C⊥, equivalently, a matrix whose null space is C. A linear code C is determined by

either a generator matrix or a parity check matrix. For C2, a parity check matrix

is H2 =

1 1 1 0 0
1 1 0 1 0
0 1 0 0 1

 . The parity check matrix of a linear code has the following

important property:

Lemma 1.2. Let C be a code with a parity check matrix H such that any set of

d − 1 columns of H is linearly independent and there is a set of d columns of H

that is linearly dependent. Then, the minimum distance of C is d.

Exercise 1.1.5. Prove this lemma and use it to verify that the minimum distance of

C2 is 3.

The Hamming weight enumerator, WH
C (x, y), of a linear code C of length n is

defined as

WH
C (x, y) =

∑
u∈C

xn−w(u)yw(u) =
n∑

i=0

Aix
n−iyi

where Ai = |{u ∈ C : w(u) = i}|, the number of codewords in C with weight equal

to i. The weight enumerator of the code C2 is W = x5 + 2x2y3 + xy4.

One of the classical theorems of coding theory is MacWilliam’s identity which

relates the weight enumerators of a code and its dual.
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Theorem 1.2. 53 The relationship between the Hamming weight enumerators of a

q-ary linear code C and its dual C⊥ is given by

WH
C⊥(x, y) =

1
|C|

WH
C (x+ (q − 1)y, x− y).

Definition 1.6. The map that sends WH
C (x, y) to 1

|C|W
H
C (x + (q − 1)y, x − y) is

called the MacWilliams transform.

The MacWilliams transform of the weight enumerator W of C2 is x5 + 2x3y2 +

4x2y3 + xy4. Therefore, the minimum distance of C⊥
2 is 2 and it is a [5, 3, 2]2-code.

Note that the sum of the coefficients of the weight enumerator is the total number

of codewords.

Definition 1.7. A linear code C is called self-orthogonal if C ⊆ C⊥ and self-dual

if C = C⊥. A code C (not necessarily linear) is called formally self-dual if its

Hamming weight enumerator coincides with its MacWilliams transform.

It is clear that a self-dual code is also formally self-dual. Another important notion

in coding theory is equivalence of codes.

Definition 1.8.53 Let C1 and C2 be codes of length n over Fq. We say that

C1 and C2 are equivalent if there are n permutations π0, π1, . . . , πn−1 of Fq and a

permutation σ of n coordinate positions such that

If (c0, . . . , cn−1) ∈ C1 then σ
(
π0(c0), . . . , πn−1(cn−1)

)
∈ C2.

For linear codes only those πi’s which are the compositions of a scalar multiplication

with a field automorphism are allowed. The scalar multiple may vary for each

coordinate, but the field automorphism must be the same.

There are some important special cases: when all πi’s are identity permutations,

we say that C1 and C2 are permutation equivalent and when each πi is a multipli-

cation by a non-zero scalar, C1 and C2 are said to be scalar multiple equivalent or

monomially equivalent. For prime fields such as Zp, integers modulo a prime p (also

denoted by Fp or GF (p)), there are no non-trivial field automorphisms. Equivalent

(linear) codes have the same weight enumerator, in particular they have the same

minimum distance.
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1.1.1. Main Problem of Coding Theory

One of the central problems of algebraic coding theory is to determine the best

possible values of the parameters of a code, and to explicitly construct codes with

those parameters. There is an online table33 of best known linear codes over the

finite fields of size ≤ 9. Additionally, there is a table of best known (non-linear)

binary codes.50

To formulate the main problem for linear codes, we can first choose the alphabet

size q, then fix two of the parameters and ask for the optimal value of the other.

For example, fixing n and k, we ask for the largest value of d. This value is denoted

by dq(n, k). Similarly, we can fix n and d, and try to maximize k, or the size of the

code. The maximum size of such a code is denoted by Aq(n, d). Or, fix k and d, and

try to minimize n. This minimum value is denoted by nq(k, d). There are numerous

bounds on the parameters of a code. We review some of the most elementary bounds

in the next section. Others can be found in standard books in coding theory such

as.53 The problem of determining the values nq(k, d) (or dq(n, k)) have been a

central problem in coding theory. Many papers in the literature deal with this

problem. In general, the optimal values are not determined except for small values

of k, or when n− k is small. A printed (but not up to date) table is available in17

with online and up to date version at.33 Among others, some of the cases where the

problem is solved are n2(k, d), k ≤ 8 in,14 d3(n, k), k ≤ 6 (not all cases determined)

in,15 n4(5, d) for many cases in,16 some cases of n2(9, d) in,27 and many cases of

n5(k, d) for k = 3, 4 in.13,44 A survey on the subject can be found in.41

There are various algebraic methods to construct codes with good parameters.

In the following sections we will describe some of these methods. We first review

some necessary abstract algebra in section 3, then introduce some of the well-known

constructions in section 4. There are also many ways to combine existing codes to

produce new codes. Some of these methods are described in the next section. In

section 5, we pay special attention to the class of quasi-cyclic and related codes

which have proven to be promising towards a solution to the main problem of

the coding theory. Section 6 focuses on the computationally difficult problem of

determining the minimum distance of a code. We devote a section (section 7) to

the codes over Z4, the integers modulo 4 due to increased attention to those codes

in recent years. The section also introduces a recently created database of best

known codes over Z4. We list some open problems in the area of quasi-cyclic and
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related codes in section 8.

1.2. Some Elementary Constructions and Elementary Bounds on
Codes

1.2.1. Some Elementary Constructions

Extending a Code

Given a code C, there are many ways of obtaining longer codes by adding

coordinates to C. The most common way to extend a linear code is by adding

an overall parity check. If C is an [n, k, d]q-code, the extended code Ĉ is defined by

Ĉ = {(c0, c1, . . . , cn−1, cn) : (c0, c1, . . . , cn−1) ∈ C,
n∑

k=0

ck = 0}

and it is an [n+ 1, k, d̂]-code where d̂ = d or d+ 1.

Puncturing a Code

Puncturing a code is opposite of extending where one fixed coordinate position

is deleted from all codewords. If C is an (n,M, d)q-code with d ≥ 2, then the

code C∗ obtained by puncturing C once has parameters (n − 1,M, d∗) where

d∗ = d or d− 1. If C is a linear code with parameters [n, k, d]q then C∗ has param-

eters [n− 1, k, d∗]q, d∗ = d or d− 1.

Shortening a Code

Let C be an [n, k, d]q-code. Fix a position i and let Ci be the set of all codewords

that have 0 at position i. Then Ci is a subcode of C. If we delete the coordinate i

from the set of vectors in Ci then the resulting code is called a shortened code of

C. The parameters of the shortened code are [n− 1, k − 1, d]q.

Direct Sum

Given two linear codes C1, C2 over Fq with parameters [ni, ki, di], i = 1, 2, then

their direct sum is the code given by C1 ⊕ C2 = {(u,v) : u ∈ C1,v ∈ C2}, ((u,v)

denotes the concatenation of the vectors u and v). Then the parameters of the

direct sum code are [n1 + n2, k1 + k2,min{d1, d2}]. Moreover, if Gi and Hi are

generator and parity check matrices of Ci respectively, then a generator matrix of

C1 ⊕ C2 is
(
G1 0
0 G2

)
and a parity check matrix is

(
H1 0
0 H2

)
.
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The (u|u + v) construction)

Another way to combine two linear codes C1, C2 of the same length over the

same field Fq to obtain a new code of double length is through the (u|u + v) con-

struction which is defined as C3 = {(u,u + v) : u ∈ C1,v ∈ C2}. It is not hard to

show that the parameters of C3 are [2n, k1+k2,min{2d1, d2}], where the parameters

of Ci are [n, ki, di]. It is also not difficult to show that the generator and parity

check matrices of C3 are
(
G1 G1

0 G2

)
and

(
H1 0
−H2 H2

)
respectively.

The (u|u + av|u + v + w) construction)

Given three codes C1[n1, k1, d1], C2[n2, k2, d2], C3[n3, k3, d3] over the same field Fq,

and a ∈ Fq we can generate a new code of the form C4 = {(u,u + av,u + v + w) :

u ∈ C1,v ∈ C2,w ∈ C3}. When a = −1, the parameters of C4 are

[n+ max{n1, n2}+ max{n1, n2, n3}, k1 + k2 + k3,min{3d1, 2d2, d3}]. Moreover, C4

has a generator matrix of the form

G1 G1 G1

0 aG2 G2

0 0 G3

.

Construction X

Once again, consider three codes C1[n1, k1, d1], C2[n2, k2, d2], C3[n3, k3, d3] over a

field Fq. If k1 = k2 + k3 and C2 is a subcode of C1, implying n1 = n2 and k1 ≥ k2,

then we can split C2 into a union of cosets of C1 and append a different word

from C3 to each of the cosets. Thus we end up with a code with parameters

[n1 + n3, k1, d ≥ min{d2, d1 + d3}] and a generator matrix given by
(
G12 G3

G2 0

)
.

Here G2 and G3 are the generator matrices of respectively C2 and C3, while G12 is

such that G12 and G2 together generate C1.

1.2.2. Some Bounds on Codes

There are many bounds on the parameters of a code. Here, we give two most

elementary bounds: the singleton bound that is related to MDS codes and the

sphere packing bound that is related to perfect codes. More bounds can be found

in books on the subject such as.9,42,53,64,74

Theorem 1.3. (The Singleton Bound) Aq(n, d) ≤ qn−d+1

Proof. Let C be a q-ary (n,M, d)-code. If we remove the last (or any) d − 1

coordinate positions from each codeword in C, the resulting M words are still
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distinct. Since those have length n− d+ 1, we have M ≤ qn−d+1 �

The Singleton bound implies that any [n, k, d]q code must satisfy qk ≤ qn−d+1 or

equivalently d ≤ n−k+1. A linear code for which the equality holds in this bound

is called a maximum distance separable code, or MDS code. It is known that the

dual of an MDS code is also MDS. So is a shortening. MDS codes are known to exist

for small lengths. In fact for any prime power q and any dimension k, 1 ≤ k ≤ q+1,

there exists a [q + 1, k, q − k + 1]q MDS code (hence for any smaller length). It is

conjectured that no longer non-trivial MDS codes exist except for n = q + 2 for q

even and k = 3 or k = q − 1.53 The conjecture has been proven in some cases, but

the general case is still open. See77 as an example of a case for which the conjecture

is proven.

Theorem 1.4. (The Sphere Packing Bound or the Hamming Bound)

Aq(n, d) ≤
qn∑t

j=0

(
n
j

)
(q − 1)j

, where t = bd− 1
2

c.

The proof of this bound is based on the observation that the “spheres” of radius t

around codewords are disjoint.

An (n,M, 2t+ 1)q-code C is said to be perfect (or t-perfect) if the balls Bt(c) =

{x ∈ Fn : d(x, c) ≤ t} of radius t around codewords are disjoint and cover the space

Fn (here F is the alphabet of size q for the code, it is not necessarily a field), i.e.,⋃
c∈C

Bt(c) = Fn.

For perfect codes the equality holds in the sphere packing bound. Perfect codes

are rather rare. There has been intensive search to classify all perfect codes or to

discover new ones. After much effort, the classification of all perfect codes is nearly

complete. The result on the classification of all perfect codes can be found in42

(page 49) or with more details in74 (Chapter 7).

1.3. Some Background in Abstract Algebra

In algebraic coding theory finite fields and polynomials over finite fields are very

important. In this section, we review some of the basic facts about these objects.

Due to space considerations, we skip background information on such topics as

rings, ideals, and Euclidean domains. For more details, the reader is referred to

the books such as.30,48,64,65 Most of the definitions, theorems, and examples in
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this section (and its sub-sections) can be found in48,64 as well as the proofs of the

theorems.

1.3.1. Polynomials

A fundamental theorem about polynomials over fields is the following theorem

known as the division algorithm.

Theorem 1.5. The polynomial ring F [x] over a field F is a Euclidean domain

with σ(p(x)) = deg(p(x)), with the well known division algorithm of polynomials:

Given f, g ∈ F [x] with g 6= 0, there exist unique polynomials q, r ∈ F [x] such that

f = q ·g+r, where r = 0 or deg(r) < deg(g). Thus F [x] is a principal ideal domain,

and hence a unique factorization domain.

Example 1.3. Let f(x) = 3x4 + x3 + 2x2 + 1 ∈ Z5[x], g(x) = x2 + 4x+ 2 ∈ Z5[x].

Then f = q · g + r with q(x) = 3x2 + 4x, r(x) = 2x+ 1 and deg(r) < deg(g).

Definition 1.9. Given two polynomials f, g ∈ F [x], g 6= 0 we say that g divides f

(also denoted by g|f) if there exists a polynomial p ∈ F [x] such that f = p · g. This

is equivalent to saying that the remainder in the division algorithm is 0 when f is

divided by g.

Definition 1.10. A non-zero, non-constant polynomial f ∈ F [x] is said to be

irreducible over F if whenever f = p · q for some polynomials p, q ∈ F [x] then either

p or q is a constant polynomial.

Irreducible polynomials are very important in finite field theory.

Definition 1.11. A polynomial d is called a greatest common divisor of polynomials

f and g if

i) d|f and d|g
ii) whenever p|f and p|g, p|d as well

A greatest common divisor is unique up to a constant multiple. If f, g are either in-

tegers or polynomials, the notation (f, g) is commonly used to denote their greatest

common divisor. Thus the notation (f, g) = 1 means f and g are relatively prime,

where f and g could be either integers or polynomials.

An element a ∈ F is called a root (or a zero) of a polynomial f ∈ F [x] if f(a) = 0.

It is well known (follows from Theorem 1.5) that an element a ∈ F is a root of a
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polynomial f ∈ F [x] if and only if (x − a)|f(x). For polynomials of degree 2 or 3

existence of roots is equivalent to reducibility. This result again follows from the

division algorithm.

Lemma 1.3. A polynomial of degree 2 or 3 over a field F is irreducible in F [x] if

and only if it has no roots in F .

Exercise 1.3.1. Prove this lemma, and give an example to show that it is not true

for polynomials of higher degrees.

If (x − a)k|f(x) for k > 1 then a is called a multiple root of f . The largest

integer r such that (x − a)r|f(x) but (x − a)r+1 6 |f(x) is called the multiplicity

of a. If r = 1 then a is called a simple root. The notion of derivative, defined

purely algebraically, is useful for determining multiplicity of roots. The derivative

of a polynomial f(x) = a0 + a1x+ a2x
2 + · · ·+ anx

n ∈ F [x] is defined by f
′
(x) =

a1 + 2a2x + · · · + nanx
n−1 ∈ F [x]. Then, it is not difficult to show that the usual

laws of derivatives hold in polynomial rings. We can also use derivatives to detect

multiple roots.

Proposition 1.1. An element a ∈ F is a multiple root of f(x) ∈ F [x] if and only

if it is a root of both f(x) and f
′
(x).

1.3.2. Field Extensions

In working with polynomials over fields, we often need to consider larger fields

to find the roots. Therefore, a discussion of field extensions is needed. If a field F

contains a subset K that happens to be a field by itself with the induced operations,

then K is called a subfield of F , and F is called an extension (field) of K. If K 6= F ,

then K is a proper subfield of F .

If K is a subfield of a finite field Fp with p elements where p is a prime, then

K must contain 0 and 1 and, by closure under addition, all the other elements of

Fp. Therefore, K = Fp and Fp contains no proper subfields. A field containing no

proper subfields is called a prime field. Any finite field of order p, p prime, is a

prime field. Another example of a prime field is the field Q of rational numbers,

which has characteristic 0. It turns out that these are the only prime fields. Any

field F contains a prime field that is isomorphic to either Fp or Q depending on

whether the characteristic of F is a prime p or 0.
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A common way of obtaining extension fields is by adjoining a set of elements S

to a given field K from a larger field F that contains K. The smallest field that

contains both K and S is denoted by K(S). For a finite set S = {α1, . . . , αn} the

notation K(α1, . . . , αn) is common. If S = {α} is a singleton set then E = K(α) is

called a simple extension of K and α is called a generating element of E over K.

Elements of a larger field that are roots of (non-zero) polynomials over subfields

have a special place in field theory. For fields K ⊆ F and α ∈ F , if there exist ai ∈
K, 0 ≤ i ≤ n, not all equal to 0, such that anα

n + an−1α
n−1 + · · ·+ a1α+ a0 = 0

then α is said to be algebraic over K. For example,
√

2 ∈ R is algebraic over Q but

π is not. An extension E of K is called algebraic over K (or an algebraic extension

of K) if every element of E is algebraic over K.

The set I = {f ∈ K[x] : f(α) = 0} of polynomials that has an algebraic element

α ∈ K ⊆ F as root forms an ideal in K[x]. Since K[x] is a principal ideal domain,

there is a unique monic polynomial g ∈ K[x] such that I = 〈g〉, ideal generated by

g. This polynomial g is irreducible and it is called the minimal polynomial of α over

K. The degree of α is defined as the degree of g. The minimal polynomial has the

property that for any polynomial f over K, f(α) = 0 if and only if g|f .

It is sometimes useful to regard an extension field F as a vector space over its

subfield K. If F , considered as a vector space over K, is finite dimensional, then F

is called a finite extension of K. The dimension of F over K is called the degree of

F over K, and is denoted by [F : K].

The following are some of the standard results for extension fields.

Lemma 1.4. If F is a finite extension of K and E is a finite extension of F , then

E is a finite extension of K and [E : K] = [E : F ][F : K].

Lemma 1.5. Every finite extension is an algebraic extension.

Lemma 1.6. Let α ∈ F be algebraic of degree n over K and let p be the minimal

polynomial of α over K. Then:

(1) K(α) is isomorphic to K[x]/〈p〉.
(2) [K(α) : K] = n = deg p(x) and {1, α, . . . , αn−1} is a basis of K(α) over K.

(3) Every β ∈ K(α) is algebraic over K and its degree over K is a divisor of n.

Lemma 1.7. Let α, β be two roots of an irreducible polynomial f over K. Then

K(α) and K(β) are isomorphic by an isomorphism that maps α to β and keeps the
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elements of K fixed.

Given a polynomial f over a field K, it is often the case that K does not contain

all (or any of) the roots of f and we need to consider extension fields of K. The

smallest field F that contains all the roots of f is called the splitting field of f over

K. In F [x] f can be written as a product of linear factors, that is, there exist

elements α1, α2, . . . , αn ∈ F such that f(x) = a(x− α1)(x− α2) · · · (x− αn) where

a ∈ K is the leading coefficient of f . It is also true that F = K(α1, α2, . . . , αn). It

is well-known that splitting fields exist and they are unique (up to isomorphism).

The splitting field of a polynomial f over a field K is a finite, therefore algebraic,

extension of F since it is obtained from K by adjoining finitely many elements.

1.3.3. Structure of Finite Fields

Finite fields play a central role in algebraic coding theory. For linear codes, finite

fields have been traditionally used as the alphabet of a code. More recently, linear

codes over rings have also gained considerable interest. In this section we give a

description of the basic properties of finite fields.

The field Zp, the integers modulo p for a prime p, is the most familiar example

of a finite field, but there are many other finite fields as well. The fields Zp play

an important role in general field theory since every field of characteristic p must

contain an isomorphic copy of Zp. The most fundamental properties of finite fields

are given by the following theorems.

Theorem 1.6. Let F be a finite field. Then F has pn elements, where prime p is

the characteristic of F and n is the degree of F over its prime subfield Zp.

Lemma 1.8. In a finite field F with q = pn elements every a ∈ F satisfies aq = a.

Therefore, the polynomial xq − x factors in F [x] as

xq − x =
∏
a∈F

(x− a)

Consequently, F is the splitting field of xq − x over Zp.

Here is the main characterization of finite fields:

Theorem 1.7. For every prime p and every positive integer n there exists a finite

field with pn elements. Any finite field with q = pn elements is isomorphic to the

splitting field of xq − x over Zp.
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This theorem provides a justification for speaking of the finite field (or the Galois

field) with q elements, or the finite field of order q. We shall denote this field by Fq

or GF(q). In particular, for a prime p the notations Fp and Zp are interchangeable.

The subfields of a given finite field are uniquely determined. Given a finite field

Fq, q = pn there is a unique subfield of order pm, for each m|n.

For a finite field Fq we denote by F∗q the multiplicative group of nonzero elements

of Fq. It is well known that F∗q is a cyclic group. A generator of the cyclic group F∗q
is called a primitive element of Fq. The existence of primitive elements implies that

every finite field is a simple algebraic extension of its prime subfield, which in turn

implies that for any positive integer n and every prime p, there exists an irreducible

polynomial of degree n in Fp[x]. Irreducible polynomials having primitive elements

as their roots are given special names.

Definition 1.12. Let α be a primitive element of Fqn . The minimal polynomial of

α over Fq is called a primitive polynomial for Fqn over Fq.

1.3.4. Roots of Irreducible Polynomials

Irreducible polynomials and their roots are important for constructing finite fields.

They are also important for the construction of certain algebraic codes. In this

section we summarize important facts about the set of roots of an irreducible poly-

nomial.

Lemma 1.9. Let f ∈ Fq[x] be an irreducible polynomial and let α be a root of f in

an extension of Fq. Then for a polynomial h ∈ Fq[x], h(α) = 0 if and only if f |h.

One of the important properties of the roots of a polynomial p(x) over a finite

field Fq is that if α is a root of p, then so is αq. This follows from the fact that

aq = a and (a+b)q = aq +bq in Fq. It also follows that α, αq, αq2
, . . . are all roots of

p(x). If p(x) is an irreducible polynomial of degree m, then a root α of p(x) lies in

Fq(α) = Fqm , and Fqm is the smallest such field. Moreover, {α, αq, αq2
, . . . , αqm−1}

is the set all roots of p(x). That means that the splitting field of a polynomial

of degree m over Fq is Fqm . The elements α, αq, αq2
, . . . , αqm−1 ∈ Fqm are called

conjugates of α with respect to Fq. The conjugates of α ∈ F∗q with respect to any

subfield of Fq have the same order in the group F∗q . Therefore, we can make the

following definition.
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Definition 1.13. The multiplicative order of any root of an irreducible polynomial

f(x) ∈ Fq[x] in its splitting field is called the order of f(x).

It follows that all the conjugates of a primitive element are also primitive. As

an example, let us consider α ∈ F16, where α is a root of the irreducible polynomial

f(x) = x4 + x+ 1 over F2. The conjugates of α with respect to F2 are α, α2, α4 =

α + 1, and α8 = α2 + 1, each of them being a primitive element of F16. The

conjugates of α with respect to F4 are α and α4 = α+ 1.

On the basis of previous results, we can compute minimal polynomials as in the

following lemma.

Lemma 1.10. Let α ∈ Fqm . Then the minimal polynomial of α over Fq is

mα(x) = (x− α)(x− αq) · · · (x− αqd−1) ∈ Fq[x] where d is the smallest positive in-

teger such that αqd

= α.

Example 1.4. Let p(x) = x4+x3+1 ∈ F2. It can be verified that p(x) is a primitive

polynomial for F16 over F2. Let α be a root of p(x) in F16 (hence a primitive element

of F16). Let us compute the minimal polynomials of all of the elements of F16 over

F2. Let [β] denote the set of conjugates of β ∈ F16 with respect to F2. Then,

[α] = {α, α2, α4, α8}

[α3] = {α3, α6, α12, α24 = α9}

[α5] = {α5, α10}

[α7] = {α7, α14, α28 = α13, α26 = α11}

Each conjugacy class [αi] has the same minimal polynomial mi. For example,

the minimal polynomial of α3 is m3(x) = (x − α3)(x − α6)(x − α9)(x − α12) =

x4 + x3 + x2 + x + 1, and m3(x) = m6(x) = m9(x) = m12(x). We can compute

other minimal polynomials similarly and obtain

m5(x) = m10(x) = x2 + x+ 1, m7(x) = m11 = m13(x) = m14(x) = x4 + x+ 1

1.3.5. Roots of Unity

The polynomial xn−1 over Fq is very important in algebraic coding theory due to its

connections with cyclic codes. In this section we review results on this polynomial,

its roots, and its factorization.

First, we observe that if (n, q) 6= 1, then we can write n = mpk where (m, q) = 1

and p =char(Fq). Then, xn − 1 = xmpk

− 1 = (xm − 1)pk

. Therefore, we will always
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assume that (n, q) = 1.

Let Fqm be the splitting field of xn − 1 over Fq. Since (xn − 1)
′

= nxn−1 is

relatively prime with xn − 1, the polynomial xn − 1 does not have multiple roots.

Thus, xn − 1 has n distinct roots in Fqm . The roots of xn − 1 in Fqm are called

n-th roots of unity over Fq. The set Wn of n-th roots of unity over Fq has a nice

algebraic structure.

Lemma 1.11. When (n, q) = 1, Wn is a cyclic group, a cyclic subgroup of the

multiplicative group F∗qm for a suitable m ∈ Z.

An n-th root of unity over Fq of order n, that is a generator of the cyclic

group Wn, is called a primitive n-th root of unity over Fq. We can deter-

mine m (the smallest integer such that ω ∈ Fqm) in terms of n and q. Let

ω ∈ Wn be a primitive n-th root of unity. Since ω has order n, we have

ω ∈ Fqr ⇔ ωqr

= ω ⇔ ωqr−1 = 1 ⇔ n|(qr − 1).

Since m is the smallest integer for which ω ∈ Fqm , we have the following result.

Lemma 1.12.64 If Fqm is the splitting field of xn−1 over Fq, then m is the smallest

positive integer for which n|(qm − 1), that is, m is the smallest positive integer for

which qm ≡ 1 mod n. This integer m is called the order of q mod n, which is

denoted by on(q).

1.3.6. Factorization of xn − 1

The factorization of the polynomial xn−1 over a finite field is very important for the

study of cyclic codes. For (n, q) = 1, the polynomial xn− 1 over Fq has no multiple

factors and can be factored using the fact that it has n distinct roots. It is therefore

the product of the distinct minimal polynomials. Let α be a primitive element of

Fqm , where m = on(q). Then we know that ω = α(qm−1)/n is a primitive n-th root

of unity. Therefore, the roots of xn − 1 are given by ω, ω2, . . . , ωn−1, ωn = 1. We

need to determine the minimal polynomials for these roots and take the product of

distinct ones.

For 0 ≤ i ≤ n − 1, the conjugates of ωi are ωi, ωiq, ωiq2
, . . . , ωiqd−1

where d is

the smallest positive integer such that ωiqd

= ωi. Since

ωiqd

= ωi ⇔ ωiqd−i = 1 ⇔ n|(iqd − i) ⇔ iqd ≡ i mod n,
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the minimal polynomial for ωi (and its conjugates) is

mi(x) = (x− ωi)(x− ωiq) · · · (x− ωiqd−1
).

The set of exponents of ω in the last product is called i-th cyclotomic coset of q

modulo n. These sets can be defined independently of a primitive n-th root of unity.

In fact the relation ∼ defined on Zn = {0, 1, 2, . . . , n − 1} by i ∼ j if and only if

j ≡ iqr mod n for some integer r, is an equivalence relation and the equivalence

classes are exactly the cyclotomic cosets of q modulo n. There is a one-to-one

correspondence between irreducible factors of xn − 1 over Fq and cyclotomic cosets

of q modulo n; every irreducible factor of degree k corresponds to a cyclotomic coset

of size k and k must divide m. We now illustrate this factorization with an example.

Example 1.5. Let q = 2, n = 15 and consider the polynomial f(x) = x15 − 1 =

x15 + 1 over F2. Since, m = o15(2) = 4, the splitting field of f(x) over F2 is

F16. The polynomial p(x) = x4 + x3 + 1 is primitive over F2. Let α be a root

of p(x), then it is a primitive element of F16 and happens to be a primitive 15-th

root of unity. So, the roots of x15 − 1 are 1, α, α2, . . . , α14. We already com-

puted the minimal polynomials in this case. Therefore, we obtain the factorization

x15 − 1 = (x+ 1)(x4 + x+ 1)(x4 + x3 + x2 + x+ 1)(x2 + x+ 1)(x4 + x3 + 1) over

F2.

Exercise 1.3.2. Obtain a factorization of x11−1 over F3 using cyclotomic cosets and

an irreducible polynomial of degree 5.

1.4. Some Classes of Linear Codes

In this section we will review some of the most fundamental and standard classes of

algebraic codes. The material in this section can be found in most standard books

on coding theory such as.64

1.4.1. Cyclic Codes

Cyclic codes are very important for both theoretical and practical purposes. Their

nice structure facilitates their implementation in practice. On the other hand they

establish a fundamental link between coding theory and algebra. We begin with

the definition of a cyclic code.
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Let v = (v0, v1, . . . , vn−1) be a vector in V := Fn
q . We may associate to vector

v ∈ V a polynomial in Fq[x] as follows:

φ : v = (v0, v1, . . . , vn−1) → v(x) = v0 + v1x+ · · ·+ vn−1x
n−1.

The map φ is a vector space isomorphism from V onto the subspace φ(V ) of

Fq[x]. Given this map, we can identify φ(V ) with V without an explicit reference

to φ. Hence we will think of the vectors in V as polynomials of degree < n.

Definition 1.14. A linear code is cyclic if it is invariant under (right) cyclic shift

i.e., (c0, c1, . . . , cn−1) ∈ C implies (cn−1, c0, c1, . . . , cn−2) ∈ C.

Viewing a codeword c as a polynomial c(x) in a cyclic code C implies that xc(x)

mod (xn − 1) ∈ C . Thus, a linear code C is cyclic if and only if C is an ideal of

the factor ring

Rn =
Fq[x]

〈xn − 1〉
.

This relation links algebra to coding theory and enables us to use the algebraic

structure of ideals in order to better understand the cyclic codes. From algebra,

we know that Fq[x] is a principal ideal domain and Fq[x]/〈f(x)〉 is a principal ideal

ring. Below are the most basic facts about the structure of cyclic codes.

Theorem 1.8. 64 Let C be an ideal in Rn, i.e. a cyclic code of length n.

1) There is a unique monic polynomial g(x) ∈ Rn of minimum degree which gen-

erates C, i.e. C = 〈g(x)〉. This polynomial is called the generator polynomial of

C. (The generator polynomial is usually not the only polynomial that generates C.

The next lemma characterizes all the polynomials that generate C.)

2) g(x)|xn − 1.

3) If deg(g(x)) = r, then C has dimension n− r. In fact,

C = 〈g(x)〉 = {r(x)g(x) : deg(r(x)) < n− r}

4) If g(x) = g0 + g1x+ · · ·+ grx
r, then g0 6= 0 and C has a generator matrix of

the form 
g0 g1 g2 . . . gr 0 0 0 . . . 0
0 g0 g1 g2 . . . gr 0 0 . . . 0
0 0 g0 g1 . . . gr 0 0
... . . . 0
0 0 0 . . . 0 g0 g1 g2 . . . gr


where each row is a right cyclic shift of the previous row.
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Lemma 1.13. 53 Let C be a cyclic code of length n with the least degree generator

polynomial g(x). Then,

C = 〈f(x)g(x)〉

if and only if (f(x), h(x)) = 1, where h(x) = (xn − 1)/g(x), called the check poly-

nomial of C.

Proof. =⇒: Suppose 〈g(x)〉 = 〈f(x)g(x)〉. Then g(x) = g(x)f(x)t(x) for some

t(x) ∈ Fq[x]. Since (g(x), h(x)) = 1, there are polynomials A(x), B(x) in Fq[x]

such that A(x)g(x) + B(x)h(x) = 1. Replacing g(x) with g(x)f(x)t(x), we have

(A(x)g(x)t(x)) · f(x) +B(x)h(x) = 1. Therefore, (f(x), h(x)) = 1.

⇐=: It is clear that 〈f(x)g(x)〉 ⊆ 〈g(x)〉. Since (f(x), h(x)) = 1, there ex-

ist s(x), t(x) ∈ Fq[x] such that s(x)f(x) + t(x)h(x) = 1. Hence, s(x)f(x)g(x) +

t(x)(xn − 1) = g(x). Reducing mod xn − 1 we get, s(x)f(x)g(x) = g(x). Thus,

g(x) ∈ 〈f(x)g(x)〉, and 〈g(x)〉 ∈ 〈f(x)g(x)〉. �

There is an alternative way of describing cyclic codes. Every cyclic code of length

n has a unique, monic generator polynomial of degree ≤ n that divides xn − 1.

Therefore, to find all the cyclic codes one needs to factor xn−1. If the factorization

is xn − 1 = m1(x)m2(x) · · ·mt(x), then there are a total of 2t distinct factors of

xn − 1, hence 2t cyclic codes. If α is a root of some mi(x) in some extension of Fq,

then mi is the minimal polynomial of α over Fq. So for any f(x) ∈ Fq[x], f(α) = 0

if and only if mi(x)|f(x). Therefore, we can specify C through the roots of its

generator polynomial. If g(x) = q1(x) · · · qr(x), product of some irreducible factors

of xn− 1, then 〈g(x)〉 = {f(x) ∈ Rn : f(β1) = f(β2) = · · · = f(βr) = 0} where βi is

a root of qi(x). Notice that the every element in the set Z = {βi : 1 ≤ i ≤ r} is an

n-th root of unity and therefore is a power of the primitive n-th root of unity, say

ω, over Fq. The set Z is called the zero set of the code C and uniquely identifies it.

1.4.2. BCH Codes

A very important class of cyclic codes is BCH codes, discovered by Bose, Ray-

Chaudhuri and Hocquenghem. They are defined by specifying the roots of a cyclic

code.

Definition 1.15. Let q, n, b, d ∈ N, where q is a prime power, (n, q) = 1, and

2 ≤ d ≤ n. Let ω be a primitive n-th root of unity over Fq,(we know that ω
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lies in Fqm where m = ordn(q)), mi be the minimal polynomial of ωi and Z :=

{b, b + 1, . . . , b + d − 2}. Then the BCH code C ⊆ Fn
q of designed distance d is a

cyclic code of length n over Fq defined by the following equivalent conditions:

i) v ∈ C if and only if v(ωi) = 0 for all i ∈ Z.

ii) The polynomial lcm{mi : i ∈ Z} is the least degree (monic) generator polynomial

of C.

iii) A parity check matrix of C is the matrix


1 ωb ω2b . . . ωb(n−1)

1 ωb+1 ω2(b+1) . . . ω(b+1)(n−1)

. . . . . . . . . . . . . . .

1 ωb+d−2 ω2(b+d−2) . . . ω(b+d−2)(n−1)


Remark. If b = 1 in the last definition the resulting BCH code is called a narrow-

sense BCH code. If n = qm − 1, the BCH code is called primitive.

A well-known result about BCH codes is the BCH bound.

Theorem 1.9. (BCH bound) A BCH code of designed distance d defined by 1.15

has minimum distance ≥ d.

The BCH bound can be proven by applying Lemma 1.2 on the parity check

matrix. Alternatively, it can be proven using Mattson-Solomon polynomials.64

A practical example for the use of BCH codes is the European and trans-Atlantic

information communication system, which has been using such codes for many

years.49 The message symbols are of length 231 and the generator polynomial is of

degree 24 so that 231+24=255=28 − 1 is the length of the codewords. The code

detects at least 6 errors and its failure (incorrect decoding) probability is one in

sixteen million.

Exercise 1.4.1. Determine the parameters of the binary, narrow-sense BCH code of

length 15, and designed distance 5.

1.4.3. Reed Solomon Codes

A special case of BCH codes is Reed-Solomon codes (or RS codes for short) which are

defined as narrow sense BCH codes of designed distance d and of length n = q − 1

over Fq. Hence m = 1 and Fq posses a primitive n-th root of unity. The generator
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polynomial of least degree for an RS code is

g(x) =
d−1∏
i=1

(x− ωi),

where ω is a primitive element of Fq. It turns out that an RS code has parameters

[n, k, n− k + 1]q where n = q − 1, i.e., they are MDS codes.

RS codes are used to obtain high sound quality of compact discs.

There is an alternative description of RS codes that motivates the construction

of algebraic geometry codes: Let 1 ≤ n ≤ q, 1 ≤ k ≤ n and let

Pk = {f(x) ∈ Fq[x] : deg f(x) < k}.

First, choose n distinct elements α1, α2, . . . , αn ∈ Fq, then define a Reed-Solomon

code by

GRSq(n, k) = {(f(α1), f(α2), . . . , f(αn)) : f(x) ∈ Pk}.

It can easily be verified that the code GRSq(n, k) is a linear code with the

parameters [n, k, n− k + 1]q over Fq.

Exercise 1.4.2. Show that an RS code of length n = q defined by the second method

is equivalent to a cyclic code.

1.4.4. Hamming Codes

Hamming codes are an important class of linear codes. The binary Hamming code

with parameters [7,4,3] was one of the first codes designed and used in practice

by R. Hamming.39 In general, they are defined via a parity check matrix over

any finite field Fq. First, choose a positive integer r. Let H be a matrix whose

columns consist of all vectors of length r over Fq whose first non-zero entry is

1. What are the parameters of the Hamming code? A counting argument shows

that there are 1 + q + q2 + · · · + qr−1 = qr−1
q−1 such vectors, therefore, H is an r

by n matrix, where n = qr−1
q−1 . What is the rank of H? It is easy to see that

after a permutation of columns (if necessary), H can be put into the form
(
Ir H

′ )
where Ir is the identity matrix of order r. Therefore, the rank of H is r, and its

nullity, which is the dimension of the Hamming code, is n − r. Finally, we want

to determine the minimum distance of Hamming code. One can easily show that

no two columns are linearly independent (i.e., no column is a scalar multiple of
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another), and there exist three columns that are linearly dependent. Hence, by

Lemma 1.2 the minimum distance is 3, and the parameters of the Hamming code

are [n, n − r, 3]q, where n = qr−1
q−1 . Given these parameters, it is easy to show that

Hamming codes are perfect. They are an infinite family of perfect codes. Besides

Hamming codes, the only linear perfect codes are the Golay codes. Moreover, all

binary Hamming codes are cyclic.64 More generally, Hamming codes are equivalent

to cyclic codes when (r, q − 1) = 1.64

1.4.5. Quadratic Residue Codes

Quadratic residue codes are also a special class of cyclic codes. To define them,

we first need to introduce the concept of a quadratic residue. Let p be an odd

prime. An integer a such that (a, p) = 1 is called a quadratic residue mod p if

the equation x2 ≡ a mod p has a solution. Otherwise, a is called a quadratic non

residue. The set of quadratic residues and non-residues mod p are denoted by QR

and NR respectively. For example, for p = 23, QR = {1, 2, 3, 4, 6, 8, 9, 12, 13, 16, 18}
and NR is the rest of the non-zero integers modulo 23. It is well known that of

the p − 1 non-zero integers mod p, exactly half of them are in QR and the other

half are in NR. It is also easy to show that if x, y ∈ QR, then xy ∈ QR, and

if x, y ∈ NR, then xy ∈ QR. On the other hand, if x ∈ QR and y ∈ NR then

xy ∈ NR.

Let p be an odd prime, and let q be a prime that is a quadratic residue mod p.

From the closure properties of QR and NR, it follows that whenever an element

from a cyclotomic coset cli = {i, iq, iq2, . . . } of q mod p is in QR, the entire set cli
is contained in QR. The same is true forNR. Therefore, the QR andNR are unions

of cyclotomic cosets of q mod p. For such primes p and q let ω be a primitive p-th

root of unity over Fq, and let q(x) =
∏

r∈QR

(x− ωr) and n(x) =
∏

s∈NR

(x− ωs). Then,

since QR and NR are unions of cyclotomic cosets, the polynomials q(x) and n(x)

are in Fq[x]. Moreover, xp − 1 = (x− 1)q(x)n(x). The q-ary cyclic codes generated

by Q(p) = 〈q(x)〉, Q(p) = 〈(x − 1)q(x)〉, N(p) = 〈n(x)〉, N(p) = 〈(x − 1)n(x)〉 are

called quadratic residue (QR) codes. Clearly, Q(p) ⊇ Q(p), and N(p) ⊇ N(p). It

is also clear that dimQ(p) = dimN(p) = p − deg(q(x)) = p+1
2 . It can be shown

that the codes Q(p) and N(p) are equivalent, hence they have the same minimum

distance d. The square root bound53 states that d2 ≥ p. Furthermore, if p = 4m−1

then d2 − d+ 1 ≥ p.
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Example 1.6. Let q = 2, and p = 2. Then p is a quadratic residue mod 23

(52 ≡ 2 mod 23). In general, 2 is a quadratic residue mod p (p odd prime) if and

only if p ≡ ±1 mod 8. Then we know that x23−1 = (x−1)q(x)n(x) over F2, where

deg(q(x)) = deg(n(x)) = 11. The resulting quadratic residue codes Q(p) and N(p)

have dimension 12. Moreover, by the square root bound, the minimum distance is at

least 6. The actual minimum distance turns out to be 7. This is the famous binary

Golay code with parameters [23,12,7], denoted by G23. Its extension is a [24,12,8]-

code, G24. These two codes have some fascinating properties. G23 is the only

binary, multiple error correcting, perfect code. G24 leads to a unique combinatorial

design called a Steiner triple system (a 5-design).58 It also give a construction of a

densest lattice in dimension 24, called the Leech lattice.72 Moreover, both G23 and

G24 led to the discovery of some new simple groups.72

Similarly, the ternary Golay code, G11 is also a QR residue code with param-

eters [11, 6, 5]3. It is well known that the Golay codes are the only multiple error

correcting perfect codes (up to equivalence).58

Exercise 1.4.3. Show that the Golay codes G23, G11 are perfect.

1.5. Constacyclic and Quasi Twisted Codes

This section is largely from,7 parts of it reprinted with kind permission of Springer

Science and Business Media.

1.5.1. Constacyclic Codes

There are several generalizations of cyclic codes. One immediate generalizaton is

the class of constacyclic codes. Let a ∈ F∗q := Fq − {0}. A linear code of length n

over Fq is called constacyclic if it is invariant under the constacyclic shift:

(c0, c1, . . . , cn−1) 7−→ (acn−1, c0, . . . , cn−2)

Notice that in the case a = 1 we recover cyclic codes. When a = −1, they are

called negacyclic codes. Most of the results about cyclic codes are also true for

constacyclic codes. These are summarized in the following proposition. Recall the

identification of words (vectors) of Fn
q with polynomials of degree ≤ n− 1.

Lemma 1.14. i) Constacyclic codes are precisely the ideals in the ring Fq [x]
〈xn−a〉 .

ii)The ring Fq [x]
〈xn−a〉 is a principal ideal ring and for a conctacyclic code C there ex-

ists a polynomial g(x) (called the generator polynomial) of smallest degree such that
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C = 〈g(x)〉 where g(x)|(xn − a) and dim(C) = n− deg(g(x)).

iii)If g(x) = g0 + g1x+ . . .+ grx
r then a generator matrix for C is

G =


g0 g1 g2 . . . gr 0 . . . 0
0 g0 g1 . . . gr−1 gr . . . 0
. . . . . . . . . . . . . . . . . . .

0 . . . 0 g0 g1 g2 . . . gr



where each row of G is a constacyclic shift of the previous one.

Proof. Everything is proved as in the cyclic case. �

Similarly to cyclic codes, a constacyclic code can be specified through the roots

of its generator polynomial. In studying cyclic codes the factorization of xn−1 was

crucial. Now, we are interested in factorizing xn− a over Fq. Before looking at this

factorization, we remark that in certain cases constacyclic codes are equivalent to

cyclic codes.

Lemma 1.15. If Fq contains an n-th root δ of a, then a constacyclic code of length

n is equivalent to a cyclic code of length n.

The following lemma tells us exactly when an element a ∈ Fq has an n-th root in

Fq.

Lemma 1.16.64 Let a = αi where α is a primitive element of Fq. Then the

equation xn = a has a solution in Fq if and only if (n, q − 1)|i, where (n, q − 1)

denotes the greatest common divisor of the integers n and q − 1.

Proof. The equation xn = a has a solution x = αj ⇐⇒ αnj = αi

⇐⇒ αnj−i = 1

⇐⇒ (q − 1)|(nj − i)

⇐⇒ i = nj + r(q − 1) for some integers r, j.

⇐⇒ (n, q − 1)|i �

So in our investigation of constacyclic codes, we are going to consider the case

(n, q − 1) 6 |i.
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1.5.2. Factorization of xn − a and a BCH bound

Let a ∈ F∗q be such that it does not have an n-th root in Fq. We also assume that

(n, q) = 1 so that the polynomial xn− a does not have multiple roots. The roots of

xn−a are δ, δζ, δζ2, . . . , δζn−1 where ζ is a primitive n-th root of unity and δn = a.

Then ζ lies in Fqm where m = ordq(n). By assumption δ 6∈ Fq. Since δn = a,

δnr = ar = 1, where r is the order of a in the multiplicative group F∗q which is equal

to q−1
(i,q−1) , a = αi and α is a primitive element of Fq. Hence δ is an nr-th root of 1.

Therefore, δ ∈ Fqs where s = ordq(nr). Now, qs − 1 ≡ 0 mod nr =⇒ qs − 1 ≡ 0

mod n. This implies that m|s. Consequently, Fqm ⊆ Fqs . Hence, the field Fqs

contains both ζ and δ and we may take δ = wt and ζ = wrt where w is a primitive

element of Fqs (hence a primitive (qs − 1)- st root of unity) and qs − 1 = ntr, for

some integer t. So ζ = δr And xn − a factors as follows:

xn − a =
n−1∏
i=0

(x− δζi) =
n−1∏
i=0

(x− wt(1+ir)) =
n−1∏
i=0

(x− δ1+ir)

Each irreducible factor of xn − a corresponds to a cyclotomic coset modulo nr (not

modulo n) i.e. the degree of each irreducible factor is the same as size of a cyclotomic

coset modulo nr. Since all the roots of xn−a are nr-th roots of unity, we have that

(xn − a)|(xnr − 1) also, (xnr − 1)|(xn(q−1) − 1)|(xqs−1 − 1)

Example 1.7. Let q = 5 and n = 6 and let us consider the polynomial x6 − 3 over

F5(hence constacyclic codes of length 6 over F5 with a = 3). A primitive element

of F5 is 2, 3 = 23 in F5, order of 3 in F5 is 4 and (n, q − 1) = (6, 4) = 2 6 |3 so that

there is no 6-th root of 3 in F5. According to the discussion above,

x6 − 3 =
5∏

i=0

(x− δ4i+1) = (x2 + 3x+ 3)(x2 + 2x+ 3)(x2 + 3)

where δ is a primitive 6 · 4 = 24-th root of unity. The powers of δ that appear

in this factorization are 1, 5, 9, 13, 17, 21 and these are precisely union of three (the

same as the number of irreducible factors over F5) cyclotomic cosets modulo 24:

cl1 = {1, 5}, cl9 = {9, 21} , cl13 = {13, 17}. On the other hand, x24 − 1 and x6 − 1

factor over F5 as follows:

x24 − 1 =(x2 + 3x+ 3)(x2 + 2x+ 3)(x2 + 3)(x2 + 4x+ 1)(x2 + x+ 2)

(x2 + 2x+ 4)(x2 + x+ 1)(x2 + 4x+ 2)(x2 + 3x+ 4)(x2 + 2)

(x+ 3)(x+ 4)(x+ 2)(x+ 1)
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x6 − 1 = (x2 + 4x+ 1)(x2 + x+ 1)(x+ 1)(x+ 4) The factors of x6 − 1 corre-

spond to the following cyclotomic cosets modulo 24: cl0 = {0}, cl4 = {4, 20},
cl8 = {8, 16}, cl12 = {12} which are obtained by shifting the cosets corresponding

to x6 − 3 by 1.

1.5.3. BCH Bound for Constacyclic Codes

Lemma 1.17. Let C be a constacyclic code of length n over Fq and let the generator

polynomial g(x) have the elements {δζi : 1 ≤ i ≤ d− 1} among its roots. Then the

minimum distance of C ≥ d.

Proof. Consider the constacyclic code C of length n with generator polynomial

g(x)|(xn − a) having {δζ, δζ2, . . . , δζd−1} = {δr+1, δ2r+1, . . . , δ(d−1)r+1} among its

roots. The corresponding cyclic code ψ(C) generated by g(δx)|(xn− 1) has the ele-

ments ζ, ζ2, . . . , ζd−1 among the roots. By the BCH bound, the minimum distance

of ψ(c) ≥ d. Therefore, d(C) ≥ d as well. �

We now give an example of a constacylic code that is optimal.

Example 1.8. Let q = 3 and n = 28 and consider constacyclic codes of length

28 over F3 with a = 2. We remark that the condition (n, q − 1) 6 |i implies that

we should consider only even lengths over F3. We find that r = 2 and therefore

(x28 − 2)|(x56 − 1). The factorization of x28 − 2 over F3 is as follows:

x28 − 2 =
27∏

i=0

(x− δζi) =
27∏

i=0

(x− δ2i+1)

= (x6 + 2x4 + x3 + x2 + 2)(x6 + 2x5 + 2x+ 2)(x2 + x+ 2)

(x6 + x5 + x+ 2)(x6 + 2x4 + 2x3 + x2 + 2)(x2 + 2x+ 2)

where δ is a primitive 56-th root of 1 and ζ = δ2 is a primitive 28-th root of 1 over

F3. The exponents of δ in this factorization are exactly odd integers modulo 56 and

they are partitioned into following cyclotomic cosets.

{1,3,9,19,25,27}, {5,13,15,23,39,45}, {7,21}, {11,17,33,41,43,51},
{29,31,37,47,53,55}, {35,49}
Let g(x) be the polynomial of smallest degree which contains δi, i = 7, 11, 29, 35

among its roots. Then

g(x) = x20+2x19+x17+2x16+2x13+2x12+2x11+x10+x9+2x8+x7+2x4+2x3+x+1
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and the consecutive powers αi, 14 ≤ i ≤ 27 of α are also among the zeros of g(x).

Therefore, by the BCH bound for constacyclic codes, the constacylic code of length

28 generated by g(x) has minimum distance at least 15 (and its dimension is 8). It

turns out that these are the parameters of an optimal linear code over F3 of length

28 and dimension 8.33

Exercise 1.5.1. Construct a constacyclic code of length 26, dimension 16, and mini-

mum distance 8 over F5 with constant a = 2 or 3. Note that such a code would be

optimal.

1.5.4. Quasi Twisted Codes

The class of quasi-twisted (QT) and their special case of quasi-cyclic (QC) codes

are a generalization of constacyclic (cyclic) codes and they have been shown to be

promising towards solving the main problem in coding theory: to construct codes

with the best possible parameters. A large number of new codes in these classes

have been discovered in recent years. Often, computers are employed in finding

these codes. For a sample of results in this area see6–8,22,23,34,38,68 among others.

Let n = lm where l,m ∈ N, a ∈ F∗q and define µa,l : C → Fn
q by

µa,l

(
(c0, . . . , cn−1)

)
= (a · c0−l, . . . , a · c(l−1)−l, cl−l, . . . , cn−l−1) where the sub-

scripts are taken modulo n.

Definition 1.16. A linear code C is called l-quasi-twisted (l-QT) if µa,l(C) = C.

In words, a constacyclic shift of a codeword by l positions is still a codeword.

Some of the most important classes of codes can be realized as special cases of QT

codes. For example the case a = 1 gives QC codes , l = 1 gives constacyclic codes

(also known as pseudocyclic codes), l = 1 and a = 1 yields cyclic codes.

1.5.5. Structure of 1-Generator QT codes

An l-QT code over Fq of length n = ml can be viewed as an Fq[x]/〈xm − a〉
submodule of (Fq[x]/〈xm − a〉)l (after a permutation of the coordinates). Then an

r-generator QT code is spanned by r elements of (Fq[x]/〈xm− a〉)l. In this chapter

we restrict ourselves to 1-generator QT codes. Let



July 16, 2008 22:36 World Scientific Review Volume - 9.75in x 6.5in AydinAsamovMod

Search for Good Linear Codes in the Class of Quasi-Cyclic and Related Codes 29

G0 =


g0 g1 g2 . . . gm−1

agm−1 g0 g1 . . . gm−2

agm−2 agm−1 g0 . . . gm−3

...
...

...
...

ag1 ag2 ag3 . . . g0


m×m

.

An (m ×m) matrix of the type G0 is called a twistulant matrix of order m or

simply a twistulant matrix. It is shown in7 that the generator matrices of QT codes

can be transformed into blocks of twistulant matrices by suitable permutation of

columns. Therefore, generator matrices of an r-generator and 1-generator QT codes

can be assumed to be in the following forms:
G11 G12 . . . G1l

G21 G22 . . . G2l

...
...

...
Gr1 Gr2 . . . Grl


rm×n

, and
[
G1 G2 . . . Gl

]
m×n

,

respectively, where each Gij (or Gk) is a twistulant matrix of the form 1.5.5.

Most of the work in the literature is concerned with 1-generator QC or QT codes.

Often, computer searches with heuristic search algorithms are employed (e.g.24,37)

to find new codes. A number of papers focus on rate 1/l and related QC codes

(e.g.35,38). More recently, a different search algorithm was devised for a certain

type of 1-generator QC68 and QT7 codes inspired by the work in.43 This method

produced a number of new codes over most small finite fields for which a database

of best known codes is available (e. g.5,7,22,23,25,69,70). The method is described in

detail in the rest of this section.

Let 1 ≤ i ≤ l. For fixed i consider the following ith restriction map on an l-QT

code C of length n = ml:

Πi : Fn
q → Fm

q

(c0, c1, . . . , c(ml−1)) → (c(i−1)m, c(1+(i−1)m), . . . , c(m−1+(i−1)m)).

In view of the structure of QT codes described above, Πi(C) is a constacyclic

code for all i. This yields the following theorem.

Theorem 1.10. Let C be a 1-generator l-QT code over Fq of length n = ml. Then,

a generator g(x) ∈ (Fq[x]/〈xm − a〉)l of C has the following form

g(x) = (f1(x)g1(x), f2(x)g2(x), . . . , fl(x)gl(x)),
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where gi(x)|(xm − a) and (fi(x), (xm − a)/gi(x)) = 1 for all 1 ≤ i ≤ l.

Proof. Since Πi(C) is a constacyclic code for every i we have the result. �

The following theorem plays an important role in some search methods men-

tioned above.

Theorem 1.11. Let C be a 1-generator l-QT code of length n = ml with a generator

of the form:

g(x) = (f1(x)g(x), f2(x)g(x), . . . , fl(x)g(x))

where g(x)|(xm − a), g(x), fi(x) ∈ Fq[x]/〈xm − a〉, and (fi(x), h(x)) = 1, h(x) =
xm−a
g(x) for all 1 ≤ i ≤ l. Then l · (d + 1) ≤ d(C), where {δζi : s ≤ i ≤ s + (d − 1)}

are among the zeros of g(x) for some integers s,d (d > 0) and dimension of C is

equal to n− deg(g(x)).

Next, we present two examples that illustrate how the results in this section and

the last theorem in particular is used in designing a computer search algorithm to

discover new linear codes.

Example 1.9. This example presents a ternary QT code that has the best known

parameters among all linear codes with the same length and dimension.7 Let q=3,

m=40 and a=2 and consider constacyclic codes of length 40 over F3. The order of

2 mod 3 is 2 and x40 − 2 factors over F3 as

x40 − 2 =
39∏

i=0

(x− δ2i+1)

The exponents of δ (a primitive 80− th root of 1) are odd integers mod 80 and the

corresponding powers of ζ (a primitive 40-th root of 1) are broken into the following

cyclotomic cosets mod 40:

{0,1,4,13}, {2,7,22,27}, {3,10,14,31}, {5,9,16,28}, {6,15,18,19}
{8,25,29,36}, {11,23,30,34}, {12,17,32,37}, {20,21,24,33}
{26,35,38,39}
Let h(x) be the polynomial corresponding to cyclotomic cosets containing 0,3 and

12 and let

g(x) =
x40 − 2
h(x)

= x28 + 2x27 + 2x25 + x24 + 2x23 + x21 + 2x20 + x19 + x18 + 2x17

+ 2x15 + x14 + x13 + 2x11 + x8 + 2x7 + 2x5 + x3 + x2 + 2.
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Then g(x) has degree 28 and contains consecutive powers 18 ≤ i ≤ 30 of δ among

its roots. Therefore, the constacylic code of length 40 generated by g(x) has di-

mension 12 and minimum distance ≥ 14 and a quasi-twisted code of the form

(gf1, gf2, gf3) where (fi, h) = 1 has length 120, dimension 12 and minimum dis-

tance at least 42. Let f1 = x10 + x9 + x8 + x2, f2 = 2x10 + x9 + x6 + x and

f3 = 2x11 + x10 + x9 + x8 + x5 + x4 + x2 + 2x (found by a computer search). Then

fi’s satisfy (fi, h) = 1. The QT code with these generators has actual minimum

distance of 66, 3 units larger than the previously best known linear code over F3

with parameters [120,12,63].33 The weight enumerator of this code is as follows:

01664000691512072352007577728781080008112216084971208747520901883293504096720

where the bases are the weights and the exponents are the number of codewords of

the given weight.

Example 1.10. This example presents a best known code over F4 that is QT.5

We represent the elements of F4 by {0, 1, a, b}, where b = a2 = a + 1. Let

g(x) = x39−a
h(x) where h(x) = (x6 + ax5 + x4 + ax3 + x + b)(x6 + x5 + ax3 +

x2 + x + b). Then g(x) generates a quaternary constacyclic code with parame-

ters [39, 12, 18]. According to,33 these are the parameters of the best-known code

for this length and dimension. Searching over the codes with a generator of the

form (g(x), g(x)f1(x)), we find, by the help of a computer, that if we choose

f1(x) = x + bx3 + ax7 + bx9 + bx10 + x11, then we obtain a [78, 12, 44]4-code.

This turns out to be a best known code. The weight enumerator of this code is:

014467864624921481031945032175052816075541695096562737215583417453

6032984646224145296413013916649140068124371702129472315974117.

Finally, we would like to remark that most of the search over QC/QT codes have

been among 1-generator codes. There are few papers in the literature that report

new codes from multiple generator QC codes. Two such examples are21.36

1.6. Thoughts for Practitioners

1.6.1. Computing Minimum Distance of a Linear Code

The problem of finding the minimum weight of a general binary linear code was

conjectured to be NP-complete by Berlekamp, McEliece and van Tilborg in 1978.10

Carey and Johnson, among others, repeatedly called for the resolution of the con-

jecture.31,45,46 The increased interest in the topic resulted in the proved hardness
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of a number of related problems1,2,18,26,51,71 over the years. Yet, the original con-

jecture remained open for almost two decades. In 1997, employing a polynomial

transformation from maximum-likelihood decoding to minimum distance, Vardy

showed that finding the minimum distance of a linear code over a fixed finite field

is NP-complete.75,76 More recently, Dumer, Micciancio and Sudan showed that

the minimum distance of a linear code over a finite field cannot be approximated to

within any constant factor in random polynomial time(RP), unless RP equals NP.28

Furthermore, the last result was translated to prove the hardness of approximating

the minimum distance within an additive error that is linear in the block length of

the code.29

For a [n, k, d]q linear code, computing the minimum weight via complete code-

word enumeration involves finding the minimum weight for (qk − 1) codewords of

length n. This is computationally infeasible even for small values of the parame-

ters. The fastest algorithm for finding the minimum weight of a linear code over a

finite field is based on an unpublished work by Brouwer that was later improved by

Zimmermann.

1.6.1.1. The Brouwer-Zimmermann Algorithm for Linear Codes

The work of Zimmermann was only published in German19 but English summaries

are available.11,73,79 In determining the minimum weight of a [n, k, d]q linear code,

the algorithm employs mutually disjoint(or partially disjoint) information sets and

partial codeword enumeration to compute an upper bound du on d, while keeping

track of a lower bound dl of d that grows linearly with the number of disjoint

information sets. Termination is reached when dl ≥ du. For a [n, k, d]q cyclic

code having an information set formed by k consecutive columns, there always

exist bn/kc mutually disjoint information sets. Moreover, the generator matrix

corresponding to a single information set is sufficient for codeword enumeration for

all bn/kc generator matrices.11 Thus, for some cyclic codes, a faster growth of dl

can be achieved using a single information set. This result can be extended to the

case of constacyclic codes as well.

Often times, one is interested in finding the minimum weight of a linear code but

only if it is within a certain range. In this case, the termination point of the algo-

rithm can be adjusted. The MAGMA algebra system12 supports such a feature via
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the functions VerifyMinimumDistanceLowerBound(C, d) and VerifyMinimumDis-

tanceLowerBound(C, d). The authors have devised a recent combinatorial search

algorithm that makes an extensive use of this functionality.3 The algorithm exam-

ines a large number of codes in the search space and employs the VerifyMinimumDis-

tanceUpperBound() function to quickly discard codes with minimum distance below

a prescribed value.

As far as parallel computing is concerned, an easy parallelization of the Brouwer-

Zimmermann algorithm has been implemented by van Dijk, Egner, Greferath and

Wassermann.73 Their approach is based on the revolving door algorithm by Nijen-

huis and Wilf, and a combinatorial result by of Lüneburg52 and Knuth.47 Further-

more, the autoson program by McKay can be used to distribute the work over a

network of Unix workstations.54

Finally, for certain codes of high rate R = k/n > 1/2, finding the weight distri-

bution of the dual code and using the MacWilliams transform might prove faster

than running the Brouwer-Zimmermann Algorithm.

1.7. Codes over Z4 and Database of Z4 Codes

1.7.1. Codes over Z4

After the discovery of good binary non-linear codes from codes over Z4, the ring

of integers modulo 4 (sometimes called “quaternary codes”)40,55 there has been

intensive research on this class of codes. A code C of length n over Z4 is a subset of

Zn
4 . C is a linear code over Z4 if it is an additive subgroup of Zn

4 , hence a submodule

of Zn
4 . An element of C is called a codeword and a generator matrix is a matrix

whose rows generate C. The Hamming weight wH(x) of a vector x = (x1, x2, . . . , xn)

in Zn
4 is the number of components xi 6= 0. The Lee weight wL(x) of a vector x

is
∑n

i=1 min{|xi|, |4− xi|}. The Hamming and Lee distances dH(x, y) and dL(x, y)

between two vectors x and y are wH(x − y) and wL(x − y), respectively. The

minimum Hamming and Lee weights, dH and dL, of C are the smallest Hamming

and Lee weights, respectively, amongst all non-zero codewords of C.

The Gray map φ : Zn
4 → Z2n

2 is the coordinate-wise extension of the function

from Z4 to Z2
2 defined by 0 → (0, 0), 1 → (1, 0), 2 → (1, 1), 3 → (0, 1). The image

φ(C), of a linear code C over Z4 of length n by the Gray map, is a (in general

non-linear) binary code of length 2n. The Gray map is an isometry from (Zn
4 , wL)

to (Z2n
2 , wH). Therefore, the minimum Hamming weight of φ(C) is equal to the
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minimum Lee weight of C.

The dual code C⊥ of C is defined as {x ∈ Zn
4 | x · y = 0,∀ y ∈ C}, where x · y

is the standard inner product of x and y. C is self-orthogonal if C ⊆ C⊥ and C is

self-dual if C = C⊥.

Two codes are said to be equivalent if one can be obtained from the other by

permuting the coordinates and (if necessary) changing the signs of certain coordi-

nates. Codes differing by only a permutation of coordinates are called permutation-

equivalent. Any linear code C over Z4 is permutation-equivalent to a code with

generator matrix G of the form

G =
[
Ik1 A1 B1 + 2B2

0 2Ik2 2A2

]
,

where A1, A2, B1, and B2 are matrices with entries 0 or 1 and Ik is the identity

matrix of order k. Such a code has size 4k12k2 . The code is a free module if and

only if k2 = 0. If C has length n and minimum Lee weight dL, the code is referred

to as an [n, 4k12k2 , dL]-code.

1.7.2. A Database of Z4 Codes

Cyclic codes, QC codes and QT codes over Z4 are studied in6,8 and many new codes

are discovered whose Gray images have better parameters than best known binary

linear codes. Among other results in this area, two new non-linear binary codes

have been constructed using Z4 linear codes and their binary images. One of the

codes has binary parameters (64, 237, 12).20 Another code has binary parameters

(92, 224, 28).8 The latter code is QC over Z4 and its generator polynomial is related

to the generator polynomial of the binary Golay code G23. Moreover, many Z4

codes have been discovered whose Gray images have better parameters than the

comparable binary linear codes (such codes are called “good codes”).4,6,8 Since

the Gray image of a Z4 linear code is most often non-linear, it is appropriate to

compare their parameters with the codes in.50 However, the database in50 is very

limited and often does not extend to the parameters of interest. Despite extensive

research on codes over Z4, there has been no database of best known Z4 codes.

Recently, such a database has been created by the authors. It is available online at

http://Z4codes.info.

While the Hamming distance has been the dominant metric in the field case,

researchers have explored different distance functions for codes over Z4. Most re-
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searchers have focused their work on the Lee distance but Euclidean and Hamming

metrics have also been considered. In order to deal with the presence of multiple

distance functions we had to adopt a list, rather than the typical tabular struc-

ture for our database. Moreover, we chose not to overwrite existing codes when an

improved code has been found but only add the new code to the list. Finally, for

the sake of flexibility and convenience, we have decided to provide the willing re-

searchers with editing privileges that would allow them to upload their new results

instantly.

1.8. Directions for Future Research

In this section we list a few open problems in algebraic coding theory, related to

the material that is discussed in this chapter. These problems appear in,5 portions

reprinted, with permission, from5 c©2007 IEEE.

1.8.1. QCT Codes

This subsection reviews a generalization of QT codes (hence of QC codes as well),

called QCT codes that are first introduced in,5 and investigates their structural

properties. It then presents open problems in this class.

Let a1, a2, . . . , al be non-zero constants (not necessarily distinct) in Fq. A linear

code of length n = ml will be called a QCT code if it is invariant under the following

shift:

(c1, c2, . . . , c(m−1)l, c(m−1)l+1, . . . , cml) →
(a1cml, a2cml−1, . . . , alc(m−1)l+1, c1, . . . , c(m−1)l+1)

We remark that if all the constants are equal then we obtain a QT code, if they are

all equal to 1 then we obtain a QC code. If l = 1 then we obtain constacyclic and

cyclic codes as special cases.

As in the case of a QT code, it is easy to see that after a suitable permutation of

the coordinate positions, a generator matrix of a QCT code can be put into blocks

of twistulant matrices (each block involving a possibly different constant).

To illustrate this construction, we present two examples of QCT codes which

are better than the best-known QC or QT codes over Z4.5

i) A [6,2,6] code generated by

G =
[

1 3 0 1 1 2
1 1 1 0 2 1

]
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This code has minimum Lee weight dL = 6, while the best QC or QT code has

dL = 5.6 In addition, this code is self-orthogonal, and the best-known QT self-

orthogonal code only has dL = 4.32

ii) An [8,4,6] code generated by

G =


0 0 1 2 0 1 1 1
2 0 0 1 3 0 1 1
1 2 0 0 3 3 0 1
0 1 2 0 3 3 3 0


This is a self-dual code, and the best QC or QT code with length 8 and dimension

4 has dL = 4.8,32 Note that the Gray map image of this code is the Nordstrom-

Robinson code.53 Thus this construction provides a new simple description of this

code.

In addition to the codes above, many hundreds of QCT codes over Z4 and over

finite fields have been found which have the same parameters as the best-known

codes. Therefore, it is likely that this class of codes contains some new codes.

1.8.2. Algebraic Properties of QCT Codes

Now we like to investigate the algebraic structure of QCT codes. Let ai ∈ F∗q ,
Ri = Fq [x]

〈xm−ai〉 , 1 ≤ i ≤ l and R = R1 × R2 × · · · × Rl. A QCT code C, after a

suitable permutation of coordinates, can be regarded as an Fq[x]-module of R. We

say that C is s-generated if it is generated by s elements. Since each block (of length

m) of a QCT code is actually a constacyclic code, we have the following result.

Lemma 1.18. An s-generated QCT Code C has generators of the form

{g1(x), g2(x), . . . , gs(x)} where

• gj(x) = (gj1(x), gj2(x), . . . , gjl(x))

• gji(x) = fji(x)gi(x) for some gi(x) | xm − ai, fji(x) ∈ Ri and (fji, hi) = 1

where xm − ai = gi(x)hi(x).

Again, we will focus on the 1-generator case. As a corollary we have that a

1-generator QCT code is generated by an element of the form

g(x) = (f1(x)g1(x), f2(x)g2(x), . . . , fl(x)gl(x))

where fi(x), gi(x) ∈ Ri and gi(x) | (xm−ai). Moreover, we can show that fi and gi

can be chosen so that (fi(x), hi(x)) = 1 where hi(x) = xm−ai

gi(x) . For two polynomials
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f and g we denote their greatest common divisor by (f, g) and their least common

multiple by [f, g].

Next we consider bounds on the parameters of a QCT code.

Theorem 1.12. Let C be a 1-generator QCT code generated by an element of the

form described above.

(1) dim(C) = deg([h1, h2, . . . , hl])

(2) d(C) ≥ min{di : 1 ≤ i ≤ l} where di is the minimum distance of the i-th

constacyclic block and d(C) is the minimum distance of C.

Proof. Let h = [h1, h2, . . . , hl], then clearly, h(x)g(x) = 0 which implies that

dim(C) ≤ deg(h). On the other hand, if f(x)g(x) = 0 then f(x)fi(x)gi(x) = 0 in

Ri, for 1 ≤ i ≤ l. This implies that hi(x) | f(x)fi(x). Since (hi(x), fi(x)) = 1,

hi(x) | f(x) for 1 ≤ i ≤ l. Hence h(x) | f(x). This shows dim(C) ≥ deg(h) and

the assertion on the dimension. The statement on the minimum distance is rather

obvious. �

Example 1.11.

Let q = 4 and let a be a root of the polynomial x2 + x+ 1 ∈ F2[x] so that Fq =

F2(a). Next choose a1 = 1, a2 = a, and m = 11, g1(x) = x5 +ax4 +x3 +x2 + bx+1

and g2(x) = x5 + ax4 + ax3 + x2 + x + a. Then g1 and g2 divide x11 − 1 and

x11 − a over Fq (respectively) and they generate cyclic and constacyclic codes with

parameters [11, 6, 5]q. A code with these parameters is optimal.33 Now we consider

the QCT code generated by 〈g1, g2〉. In this case, h1 = x11−1
g1

and h2 = x11−a
g2

are

relatively prime so that [h1, h2] = h1h2, hence the dimension is 12. The minimum

distance of this QCT code is 5 which shows that the lower bound on the minimum

distance is attained. Thus we obtain a quaternary [22, 12, 5] code. According to,33

there exists a quaternary [22, 12, 7] code.

Generalizing from this example, we can say more about the dimension and

minimum distance of QCT codes in the special case when all the constants are

distinct. If a1 6= a2, then xm−a1 and xm−a2 are relatively prime. If xm−a1 = g1h1

and xm−a2 = g2h2 then (h1, h2) = 1 (as well as (g1, g2) = 1) so that [h1, h2] = h1h2.

Then the QCT code C generated by g = 〈g1, g2〉 has dimension k1 + k2 where

k1, k2 are, respectively, the dimensions of the constacyclic codes generated by g1

and g2. We also claim that in this case the minimum distance is actually equal to
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min{d1, d2}, where di is the minimum distance of the constacyclic code generated

by gi. To see this, consider {th2g = (th2g1, 0) : t ∈ Fq[x], t 6= 0,deg(t) < deg(h1)}.
Since 〈g1〉 = 〈h2g1〉 (because (h1, h2) = 1), we see that there is a codeword of weight

d1 in C. Similarly, one can show that C contains a codeword of weight d2. The same

argument can be applied to any l when a1, a2, . . . , al are all distinct. This shows

that the minimum distance of such a QCT code is not very high. However, there

is a way to impose a restriction so that a better bound on the minimum distance is

obtained.

Theorem 1.13. Let C be a 1-generator QCT code generated by, i.e., Fq-span of

g(x) = (f1(x)g1(x), f2(x)g2(x), . . . , fl(x)gl(x)) with the conditions on the fi’s and

gi’s as described before. Let h = min{deg(hi) : 1 ≤ i ≤ l}. Then the subcode

C ′ generated by g(x), xg(x), x2g(x), . . . , xh−1g(x) has dimension h and minimum

distance ≥ d1 + d2 + · · ·+ dl where di is the minimum distance of the code 〈gi〉.

Example 1.12.

Let q = 5,m = 13, l = 3, a1 = 1, a2 = 2, a3 = 4, g1 = (x4+x3+4x2+x+1)(x+4),

g2 = (x4+4x3+4x2+x+1)(x+3), g3 = (x4+2x3+2x2+1)(x+1) where g1 | (x13−1),

g2 | (x13−2) and g3 | (x13−4) over F5. The constacyclic codes 〈g1〉, 〈g2〉 〈g3〉 all have

parameters [13, 8, 4] and they are optimal. The subcode of 〈f1g1, f2g2, f3g3〉 given in

the last theorem has length 39, dimension 8 and minimum distance ≥ 12. However,

when we choose f1 = x7, f2 = x7 + 2x6 + 2x5 and f3 = 3x6 + x + 2 the resulting

code is a [39, 8, 21] code. This example shows that the actual minimum distance in

this construction may be significantly larger than the lower bound promised by the

theorem. This code is not the best known code however, according to33 there is a

[39, 8, 23] code.

1.8.3. Open Problems

Open Problem I: Let C be a cyclic (or constacyclic) code of length n. How

should a(x) be chosen so that the minimum distance of the code {|u(x)|a(x)u(x)(
mod xn − 1)| : u(x) ∈ C} is as large as possible? Is there a difference between the

field version and the ring version of this problem?

The practical evidence from searches over 1-generator QC and QT codes shows

that in many cases we do get very large minimum distances. However, to the best of

our knowledge, no explanation has been provided for any specific properties of the

polynomials that achieve these large minimum distances (one obvious restriction on
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a(x) is that it be relatively prime to the complement of the canonical generator).

Also, we have not noticed any explicit connection with good QT codes and this

problem.

This problem can also be expressed in the following alternative, combinatorial

way: Consider a 1-generator QT code CT with a generator of the form (g, gf) where

xm−a = gh and (f, h) = 1. Since g and fg generate the same cyclic or constacyclic

code C, CT is obtained from C by listing the codewords of C in a certain order,

then listing them in another order and taking the juxtaposition. Each choice of f

corresponds to an ordering of C. What would be a good ordering that preserves

the linearity of the code and gives a large minimum distance?

Open Problem II: Naturally, Open Problem I can be stated for 1-generator QCT

codes and their subclass described above.

Open Problem III: Find an analogue of Theorem 1.11 for multi-generator QC

codes.

1.9. Conclusion and References

Algebraic coding theory is a huge subject now. Despite much work on it, the

main problem of coding theory is still a challenging yet promising area of research,

looking for creative approaches. In this chapter we present a selected subset of

topics from the field with interesting results and related open problems. We give

special attention to a promising class of codes (QC codes and their generalizations).

Moreover, a new database of Z4 codes is introduced. The reader is referred to the

cited references for more on the subject.
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1.10. Key Concepts in the Chapter

(1) A linear code of length n over a field F is a vector subspace of Fn.

(2) A self-dual code C is a linear code whose dual C⊥ code is equal to itself, where

the dual code is defined by

C⊥ := {v ∈ Fn |〈u,v〉 = 0 for all u ∈ C}.

(3) A parity check matrix of a linear code C is a matrix whose null space is C.

(4) A generator matrix of a linear code C is a matrix whose row space is C.

(5) Hamming distance between u = (u1, u2, . . . , un),v = (v1, v2, . . . , vn) in Fn is

d(u,v) = |{i : ui 6= vi}|, the number of positions in which u and v differ.

(6) A perfect code is a code for which the sphere packing bound is attained with

equality. If the code parameters are (n,M, d)q then M ·
t∑

j=0

(
n

j

)
(q − 1)j = qn,

where t = bd−1
2 c. For a linear code [n, k, d]q the equality becomes

t∑
j=0

(
n

j

)
(q − 1)j = qn−k

(7) An MDS code (maximum distance separable code) is code for which the single-

ton bound is attained. For a linear code [n, k, d] this means d = n− k + 1. For

a non-linear code with parameters (n,M, d)q it means M = qn−d+1

(8) A cyclic code C is a linear code which is closed under cyclic shifts, i.e., if

(u0, u1, . . . , un−1) ∈ C, then (un−1, u0, . . . , un−2) ∈ C. A cyclic code of length

n over Fq is an ideal in the ring
Fq[x]

〈xn − 1〉
(9) A quasi-twisted code (more precisely an l-quasi-twisted code) is a linear code of

length n = ml that is closed under the quasi-twisted shifts by l-positions, i.e., if

(c0, c1, . . . , cn−1) ∈ C then (a · c0−l, . . . , a · c(l−1)−l, cl−l, . . . , cn−l−1) ∈ C where

the subscripts are taken mod n.

(10) An n-th root of unity over Fq is an element in an extension field of Fq that is a

root of xn − 1. A primitive n-th root of unity ω is an n-th root of unity such

that ωk 6= 1 for any k < n.

(11) A quadratic residue mod p is an integer a such that a is relatively prime with

p and the equation x2 ≡ a mod p has a solution in Zp.
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1.11. Solution to Exercises

(1) Most of these properties follow from the definition and the observation that

the minimum distance between two vectors u = (u1, u2, ..., un) and v =

(v1, v2, ..., vn) is d(u, v) =
∑n

i=1 d(ui, vi). So, you can argue component-wise.

For example, show that the triangle inequality holds for each component (i.e.

d(ui, vi) ≤ d(ui, wi) + d(wi, vi)) by considering cases where d(ui, vi) = 0 or 1,

then summing up all inequalities for all components.

(2) If the minimum distance is d, d−1 or fewer changes cannot change a codeword

into another. Similarly, if there are at most bd−1
2 c then the resulting vector

(after errors) will remain closest to the original vector. (One can use the

triangle inequality to formally prove this)

(3) For C2 the minimum distance and minimum weight are both equal to 3. For

C1, the minimum weight is 2 but the minimum distance is 3. Let C be a linear

code. Consider the sets D = {d(u,v) : u,v ∈ C,u 6= v} and W = {wH(u) :

u ∈ C,u 6= 0}. Using linearity we can show that every number in the set S

appears in W and vice versa. Then the minimums of the sets S and W are

equal. Let u,v ∈ C such that u 6= v. Let w = u− v, then wH(w) = d(u,v),

w ∈ C (by linearity of C) and w 6= 0. Conversely, every weight wH(u), u 6= 0

can be written as the distance d(u,0).

(4) Let C be a linear code of dimension k. Then it has a basis {v1, v2. . . . , vk}
with k elements. Every element of C has a unique representation as a linear

combination a1v1 + a2v2 + · · · + akvk, where each ai has q possible values.

Therefore, the total number of such linear combinations is qk.

(5) The proof of this lemma is based on the following observation: Let H be a

k×n matrix with columns h1, h2, . . . , hn so, write H as H = [h1, . . . , hn]. Let

v = (v1, . . . , vn) be a vector, then the productH ·v gives the linear combination

v1h1 + v2h2 + · · · + vnhn. We proceed by contradiction. Suppose there is a

non-zero vector v of weight less than d in C. Let v have non-zero components

at positions i1, i2, . . . , ir where 0 < r < d. Then, we have H · v = 0 hence

vi1hi1 + vi2hi2 + · · · + virhir = 0. This means that the set hi1 , hi2 , . . . , hir

of r < d columns is linearly dependent, but this contradicts the assumption.

Hence there is no codeword of weight less than d. On the other hand, existence

of a set of s linearly dependent columns implies the existence of a codeword of

weight d. To show that the minimum distance of C2 is 3, note that there is
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no duplication among the columns of H2, hence no two columns are linearly

dependent, and there is a set of 3 columns that is linearly dependent (e.g. first,

second and last)

(6) ⇒: Let f be a polynomial of degree 2 or 3 over a field F and suppose f is

irreducible, yet it has a root a in F . Then, (x−a)|f , and so f(x) = (x−a)g(x)
for some polynomial g where deg(g(x)) = deg(f(x))− 1 ≥ 1. That means f is

reducible, contradicting the hypothesis.

⇐: Suppose f has no roots in f yet it is reducible over F . Then f(x) = r(x)s(x)

where both r and s have degree ≥ 1. Since degree of f is 2 or 3, one of r and

s must have degree 1, i.e. must be a linear polynomial of the form ax + b.

However, every linear polynomial over a field has a root. So, either r or s will

have a root, and that root will also be a root of f . This is a contradiction

again, completing the proof.

For a counterexample to the theorem for polynomials of degree 4 or higher,

consider (x2 + 1)2 over Z3 or over reals. It is reducible (obviously) yet has no

root in either field.

(7) Note m = o11(3) = 5. Therefore the splitting field of x11 − 1 over F3

is F35 . So we need a primitive polynomial of order 5. We are given

that f(x) = x5 + 2x + 1 is one such polynomial. Let α be a root

of f(x). Then it is a primitive element of F35 and ω = α242/11 =

α22 is a 11-th root of unity over F3. To find the irreducible factors

of degree 5 of x11 − 1 over F3, we compute the minimal polynomials

m1(x) = (x− ω)(x− ω3)(x− ω4)(x− ω5)(x− ω9) = x5 + x4 + 2x3 + x2 + 2

m2(x) = (x− ω2)(x− ω6)(x− ω7)(x− ω8)(x− ω10) = x5 + 2x3 + x2 + 2x+ 2

Therefore;

x11 − 1 = (x− 1)(x5 + x4 + 2x3 + x2 + 2)(x5 + 2x3 + x2 + 2x+ 2).

(8) The parameters are [15, 7, 5]. Note that this is an optimal code. By looking at

the cyclotomic cosets from Example 1.2, we see that the generator polynomial

must have degree 8, hence the dimension of the code is 7. From the table of

best known codes, the minimum distance cannot be more than 5. Since we

know that it is at least 5, it is therefore exactly 5.

(9) First, performing a permutation if necessary, we can assume that αi = αi

for 0 ≤ i ≤ n − 1 where α is a primitive element of Fq. Given a codeword

(f(α0), f(α), f(α2) . . . , f(αn−1)) for some f(x) ∈ Pk, we need to show that its
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cyclic shift (f(αn−1), f(α0), . . . , f(αn−2)) is also a codeword. This means that

(f(αn−1), f(α0), . . . , f(αn−2)) = (g(α0), g(α1) . . . , g(αn−1)) for some g(x) ∈
Pk. It is easy to verify that the polynomial g(x) = f(α−1x) satisfies this

condition.

(10) A code with parameters [n, k, 2t + 1] is perfect if the equality

qn−k =
t∑

j=0

(
n

j

)
(q − 1)j holds. For the binary Golay code G23 this means

211 =
3∑

j=0

(
23
j

)
= 1 + 23 + 253 + 1771, which holds true.

For the ternary

Golay code G11 this means 35 =
2∑

j=0

(
11
j

)
2j = 1 + 11 · 2 + 4 · 11 · 10

2
, which

also holds true.

(11) Let q = 5, n = 26 and a = 2 (or 3). Therefore we are considering constacyclic

codes of length 26 over F5 with a = 2 or 3. The order, r, of 2 in F∗5 is 4. So

we have

x26 − 2 =
25∏

i=0

(x− δ4i+1)

where δ is a primitive 26 · 4 = 104 − th root of unity. The exponents

{1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61, 65, 69, 73, 77, 81, 85, 89,

93, 97, 101}
of δ in this factorization are partitioned into the following cyclotomic cosets:

{1, 5, 21, 25}, {9, 17, 45, 85}, {13, 65}, {29, 41, 89, 101}
{33, 61, 69, 97}, {37, 49, 81, 93}, {53, 57, 73, 77}
and the corresponding powers of ζ, where ζ is a primitive 26 − th root of 1,

are

{0, 1, 5, 6}, {2, 4, 11, 21}, {3, 16}, {7, 10, 22, 25}, {8, 15, 17, 24}
{9, 12, 20, 23} {13, 14, 18, 19}.
Let g(x) be the polynomial of smallest degree which has ζi, 13 ≤ i ≤ 19 among

its roots (hence the roots of g(x) are precisely ζi where i runs through cyclo-

tomic cosets containing 3,8 and 13) . Then g(x)|(x26 − 2) and degg(x) = 8.

Hence the constacyclic code generated by g(x) has length 26, dimension 16,

and minimum distance ≥ 8. According to the linear codes table these are the

optimal parameters. (Consequently, minimum distance is exactly 8)
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