Homework on Factorization of $x^{n}-1$

1. Consider the polynomial $x^{15}-1$ over \mathbb{Z}_{2}. What is the smallest extension $G F\left(2^{r}\right)$ of \mathbb{Z}_{2} that contains a primitive 15 -th root of 1 (hence all the roots of $\left.x^{15}-1\right)$?
2. Construct the field $G F\left(2^{r}\right)$ using a primitive polynomial of degree r over \mathbb{Z}_{2}. Use Magma to verify (or generate) that your polynomial is primitive. Call a root of that polynomial a.
3. Use Magma to find minimal polynomials of all non-zero elements of $G F\left(2^{r}\right)$ (express all the elements of $G F^{*}\left(2^{r}\right)$ as powers of a). Recall that if $f(\alpha)=0$ for a polynomial f over \mathbb{Z}_{2}, then $f\left(\alpha^{2}\right)=0, f\left(\alpha^{4}\right)=0, \ldots$
4. Verify that the product of all minimal polynomials is equal to $x^{15}-1$.
5. Compute cyclotomic cosets of $2 \bmod 15$ and exhibit the correspondence between cyclotomic cosets and factors of $x^{15}-1$.
