Homework on Factorization of $x^n - 1$: Due Monday, May 2

1. Consider the polynomial $x^{15} - 1$ over \mathbb{Z}_2. What is the smallest extension $GF(2^r)$ of \mathbb{Z}_2 that contains a primitive 15-th root of 1 (hence all the roots of $x^{15} - 1$)?

2. Construct the field $GF(2^r)$ using a primitive polynomial of degree r over \mathbb{Z}_2. Use Magma to verify that your polynomial is primitive. Call a root of that polynomial β.

3. Use Magma to find minimal polynomials of all elements of $GF(2^r)$ (express all the elements of $GF(2^r)$ as powers of β). Recall that if $f(\alpha) = 0$ for a polynomial f over \mathbb{Z}_2, then $f(\alpha^2) = 0, f(\alpha^4) = 0, ...$

4. Verify that the product of all minimal polynomials is equal to $x^{15} - 1$.

5. Compute cyclotomic cosets of 2 mod 15 and exhibit the correspondence between cyclotomic cosets and factors of $x^{15} - 1$.